Preview

Труды по прикладной ботанике, генетике и селекции

Расширенный поиск

Физиолого-биохимические и генетические основы селекции амаранта (Amaranthus L.) для пищевых и кормовых целей (обзор)

https://doi.org/10.30901/2227-8834-2020-4-213-221

Полный текст:

Аннотация

В обзоре дана характеристика перспективной для всего мира сельскохозяйственной культуры – амаранта. Эта культура имеет длительную историю; у ацтеков и инков она была одной из важнейших зерновых культур, наряду с кукурузой. Однако, в отличие от последней, амарант потерял свое пищевое значение, будучи завезенным в Европу. Лишь в XX веке, во многом благодаря Н. И. Вавилову, амарантом всерьез заинтересовались как пищевой и кормовой культурой. Амарант – растение уникальное по своим питательным свойствам. Он имеет высокое содержание белка, насыщенного незаменимыми аминокислотами (лизин), а также большое количество биологически активных веществ: витамин С, амарантин, рутин, каротиноиды и др. Особую ценность представляет зерновое масло, насыщенное липидными соединениями, такими как сквален, витамин Е, фитостеролы, жирные кислоты. Эти липидные вещества имеют ряд важных с точки зрения функционального питания свойств: как природные антиоксиданты они связывают свободные радикалы, нормализуют липидный обмен, способствуют снижению уровня холестерина в крови. Основное внимание в обзоре сосредоточено на генах, определяющих содержание основных ценных биохимических компонентов: сквалена, аскорбиновой кислоты и лизина. Генетические пути, контролирующие биосинтез этих компонентов, подробно изучены на модельных растительных объектах. Наличие полной геномной последовательности амаранта Amaranthus hypochondriacus L. дает возможность идентифицировать в ее составе ортологи ключевых генов биосинтеза. На данный момент у амаранта идентифицирована лишь небольшая часть генов, включая ген сквален-синтазы (SQS), ген синтеза аскорбиновой кислоты VTC2, а также ключевые гены синтеза лизина – AK и DHDPS. В статье обсуждаются перспективы и направления маркер-ориентированной селекции этой культуры, а также сложности ее систематики и генотипирования, которые предстоит преодолеть для успешного решения селекционных задач.

Об авторе

А. Б. Щербань
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения РАН
Россия
630090 г. Новосибирск, пр. Академика Лаврентьева, 10


Список литературы

1. Badejo A.A., Tanaka N., Esaka M. Analysis of GDP-D-mannose pyrophosphorylase gene promoter from acerola (Malpighia glabra) and increase in ascorbate content of transgenic tobacco expressing the acerola gene. Plant and Cell Physiology. 2008;49(1):126-132. DOI: 10.1093/pcp/pcm164

2. Becker R. Amaranth oil: composition, processing, and nutritional qualities. In: O. Paredes-Lopez (ed.). Amaranth Biology, Chemistry, and Technology. Boca Raton, FL: CRC Press; 1994. p.133-144.

3. Bonasora M.G., Poggio L., Greizerstain E.J. Cytogenetic studies in four cultivated Amaranthus (Amaranthaceae) species. Comparative Cytogenetics. 2013;7(1):53-61. DOI: 10.3897/CompCytogen.v7i1.4276

4. Brinch-Pedersen H., Galili G., Knudsen S., Holm P.B. En gineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feedback-insensitive aspartate kinase and dihydrodipicolinate synthase. Plant Molecular Biology. 1996;32(4):611-620. DOI: 10.1007/BF00020202

5. Catchpole O.J., von Kamp J.C., Grey J.B. Extraction of squalene from shark liver oil in a packed column using supercritical carbon dioxide. Industrial and Engineering Chemistry Research. 1997;36(10):4318-4324. DOI: 10.1021/ie9702237

6. Chaney L., Mangelson R., Ramaraj T., Jellen E.N., Maughan P.J. The complete chloroplast genome sequences for four Amaranthus species (Amaranthaceae). Applications in Plant Sciences. 2016;4(9):1600063. DOI: 10.3732/apps.1600063

7. Clouse J.W., Adhikary D., Page J.T., Ramaraj T., Deyholos M.K., Udall J.A. et al. The amaranth genome: Genome, transcriptome, and physical map assembly. The Plant Genome. 2016;9(1):1-14. DOI: 10.3835/plantgenome2015.07.0062

8. Conklin P.L., Gatzek S., Wheeler G.L., Dowdle J., Raymond M.J., Rolinski S. et al. Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. Journal of Biological Chemistry. 2006;281(23):15662-15670. DOI: 10.1074/jbc.M601409200

9. Conklin P.L., Norris S.R., Wheeler G.L., Williams E.H., Smirnoff N., Last R.L. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(7):4198-4203. DOI: 10.1073/pnas.96.7.4198

10. Conklin P.L., Saracco S.A., Norris S.R., Last R.L. Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics. 2000;154(2):847-856.

11. Conklin P.L., Williams E.H., Last R.L. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proceedings of the National Academy of Sciences of the USA. 1996;93(18):9970-9974. DOI: 10.1073/pnas.93.18.9970

12. DellaPenna D., Pogson B.J. Vitamin synthesis in plants: tocopherols and carotenoids. Annual Review of Plant Biology. 2006;57:711-738. DOI: 10.1146/annurev.arplant.56.032604.144301

13. Devarenne T.P., Ghosh A., Chappell J. Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiology. 2002;129(3):1095-1106. DOI: 10.1104/pp.001438

14. Dizigan M.A., Kelly R.A., Voyles D.A., Luethy M.H., Malvar T.M., Malloy K.P. High lysine maize compositions and event LY038 maize plants. USA; patent number: US7157281B2; 2007.

15. Dowdle J., Ishikawa T., Gatzek S., Rolinski S., Smirnoff N. Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant Journal. 2007;52(4):673-689. DOI: 10.1111/j.1365-313X.2007.03266.x

16. Falco S.C., Guida T., Locke M., Mauvais J., Sanders C., Ward R.T. et al. Transgenic canola and soybean seeds with increased lysine. Biotechnology (NY). 1995;13(6):577- 582. DOI: 10.1038/nbt0695-577

17. Galili G. Regulation of lysine and threonine synthesis. The Plant Cell. 1995;7(7):899-906. DOI: 10.1105/tpc.7.7.899

18. Gandia-Herrero F., Garcia-Carmona F., Escribano J. Botany: floral fluorescence effect. Nature. 2005;437(7057):334. DOI: 10.1038/437334a

19. Harborne J.B., Williams C.A. Advances in flavonoid research since 1992. Phytochemistry. 2000;55(6):481-504. DOI: 10.1016/S0031-9422(00)00235-1

20. Harker M., Holmberg N., Clayton J.C., Gibbard C.L., Wallace A.D., Rawlins S. et al. Enhancement of seed phytosterol levels by expression of an N-terminal truncated Hevea brasiliensis (rubber tree) 3-hydroxy-3-methylglutaryl-CoA reductase. Plant Biotechnology Journal. 2003;1(2):113-121. DOI: 10.1046/j.1467-7652.2003.00011.x

21. He H.P., Corke H. Oil and squalene in Amaranthus grain and leaf. Journal of Agricultural and Food Chemistry. 2003;51(27):7913-7920. DOI: 10.1021/jf030489q

22. Hemmerlin A. Post-translational events and modifications regulating plant enzymes involved in isoprenoid precursor biosynthesis. Plant Science. 2013;203-204:41-54. DOI: 10.1016/j.plantsci.2012.12.008

23. Huang Z.R., Lin Y.K., Fang J.Y. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules. 2009;14(1):540- 554. DOI: 10.3390/molecules14010540

24. Imamura T., Isozumi N., Higashimura Y., Miyazato A., Mizukoshi H., Ohki S. et al. Isolation of amaranthin synthetase from Chenopodium quinoa and construction of an amaranthin production system using suspension-cultured tobacco BY-2 cells. Plant Biotechnology Journal. 2019;17(5):969-981. DOI: 10.1111/pbi.13032

25. Jain G., Schwinn K.E., Gould K.S. Betalain induction by l-DOPA application confers photoprotection to salineexposed leaves of Disphyma australe. New Phytologist. 2015;207(4):1075-1083. DOI: 10.1111/nph.13409

26. Kauffman C.S., Weber L.E. Grain amaranth. In: J. Janick, J.E. Simon (eds). Advances in New Crops. Portland, OR: Timber Press; 1990.

27. Keller R., Springer F., Renz A., Kossmann J. Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. The Plant Journal. 1999;19(2):131-141. DOI: 10.1046/j.1365-313X.1999.00507.x

28. Kolano B., Saracka K., Broda-Cnota A., Maluszynska J. Localization of ribosomal DNA and CMA3/DAPI heterochromatin in cultivated and wild Amaranthus species. Scientia Horticulturae. 2013;164:249-255. DOI: 10.1016/j.scienta.2013.09.016

29. Кононков П.Ф., Гинс М.С., Гинс В.К. Амарант. Интродукция в России. Москва: Луч; 2018.

30. Kwon T., Sasahara T., Abe T. Lysine accumulation in transgenic tobacco expressing dihydrodipicolinate synthase of Escherichia coli. Journal of Plant Physiology. 1995;146(5- 6):615-621. DOI: 10.1016/S0176-1617(11)81923-1

31. Laing W.A., Wright M.A., Cooney J., Bulleyet S.M. The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(22):9534-9539. DOI: 10.1073/pnas.0701625104

32. Lavini A., Pulvento C., D’Andria R., Riccardi M., Jacobsen S.E. Effects of saline irrigation on yield and qualitative characterization of seed of an amaranth accession grown under Mediterranean conditions. The Journal of Agricultural Science. 2016;154(5):858-869. DOI: 10.1017/S0021859615000659

33. Li W., Liu W., Wei H., He Q., Chen J., Zhang B. et al. Speciesspecific expansion and molecular evolution of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene family in plants. PLoS One. 2014;9(4):e94172. DOI: 10.1371/journal.pone.0094172

34. Liao P., Hemmerlin A., Bach T.J., Chye M.L. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnology Advances. 2016;34(5):697-713. DOI: 10.1016/j.biotechadv.2016.03.005

35. Martirosyan D.M., Miroshnichenko L.A., Kulakova S.N., Po gojeva A.V., Zoloedov V.I. Amaranth oil application for coronary heart disease and hypertension. Lipids in Health and Disease. 2007;6:1. DOI: 10.1186/1476-511X-6-1

36. Maughan P.J., Smith S.M., Fairbanks D.J., Jellen E.N. Development, characterization, and linkage mapping of single nucleotide polymorphisms in the grain amaranths (Amaranthus sp.). The Plant Genome. 2011;4(1):92-101. DOI: 10.3835/plantgenome2010.12.0027

37. Maughan P.J., Yourstone S.M., Jellen E.N., Udall J.A. SNP discovery via genomic reduction, barco ding, and 454-Pyrosequencing in Amaranth. Plant Genome. 2009;2(3):260-270. DOI: 10.3835/plantgenome2009. 08.0022

38. Miettinen T.A., Vanhanen H. Serum concentration and metabolism of cholesterol during rapeseed oil and squalene feeding. The American Journal of Clinical Nutrition. 1994;59(2):356-363. DOI: 10.1093/ajcn/59.2.356

39. Mlakar S.G., Bavec M., Jakop M., Bavec F. The effect of drought occurring at different growth stages on productivity of grain amaranth Amaranthus cruentus. G6. Journal of Life Sciences. 2012;6(3):283-286. Mosyakin S.L., Robertson K.R. New infrageneric taxa and combinations in Amaranthus (Amaranthaceae). Annales Botanici Fennici. 1996;33(4):275–281.

40. Müller-Moulé P., Golan T., Niyogi K. Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress. Plant Physiology. 2004;134(3):1163- 1172. DOI: 10.1104/pp.103.032375

41. Nakashima T., Inoue T., Oka A., Nishino T., Osumi T., Hata S. Cloning, expression, and characterization of cDNAs encoding Arabidopsis thaliana squalene synthase. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(6):2328-2332. DOI: 10.1073/pnas.92.6.2328

42. Pal M., Pandley R.M., Khoshoo T.N. Evolution and improvements of cultivated Amaranths IX. Cytogenetic relationships between the two basic chromosome numbers. Journal of Heredity. 1982;73(5):353-356. DOI: 10.1093/oxfordjournals.jhered.a109668

43. Park Y.J., Nemoto K., Minami M., Matsushima K., Nomura T., Kinoshita J. et al. Molecular cloning, expression and characterization of a squalene synthase gene from grain amaranth (Amaranthus cruentus L.). Japan Agricultural Research Quarterly. 2016;50(4):307-317. DOI: 10.6090/jarq.50.307

44. Park Y.J., Nishikawa Т. Rapid identification of Amaranthus caudatus and Amaranthus hypochondriacus by sequencing and PCR-RFLP analysis of two starch synthase genes. Genome. 2012;55(8):623-628. DOI: 10.1139/g2012-050

45. Park Y.J., Nishikawa T., Matsushima K., Minami M., Nemoto K. A rapid and reliable PCR-restriction fragment length polymorphism (RFLP) marker for the identification of Amaranthus cruentus species. Breeding Science. 2014;64(4):422-426. DOI: 10.1270/jsbbs.64.422

46. Perl A., Shaul O., Galili G. Regulation of lysine synthesis in transgenic potato plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts. Plant Molecular Biology. 1992;19(5):815-823. DOI: 10.1007/BF00027077

47. Polturak G., Breitel D., Grossman N., Sarrion-Perdigones A., Weithornet E., Pliner M. et al. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytologist. 2016;210(1):269-283. DOI: 10.1111/nph.13796

48. Rao C.V., Newmark H.L., Reddy B.S. Chemopreventive effect of squalene on colon cancer. Carcinogenesis. 1998;19(2):287-290. DOI: 10.1093/carcin/19.2.287

49. Sen C.K., Khanna S., Roy S. Tocotrienols: Vitamin E beyond tocopherols. Life Sciences. 2006;78(18):2088-2098. DOI: 10.1016/j.lfs.2005.12.001

50. Shoeva O.Y., Mock H.P., Kukoeva T.V., Börner A., Khlestkina E.K. Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of Hordeum vulgare. PLoS ONE. 2016;11(10):e0163782. DOI: 10.1371/journal.pone.0163782

51. Smirnoff N., Wheeler G.L. Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Biochemistry and Molecular Biology. 2000;35(4):291-314. DOI: 10.1080/10409230008984166

52. Smith T.J. Squalene: potential chemopreventive agent. Expert Opinion on Investigational Drugs. 2000;9(8):1841-1848. DOI: 10.1517/13543784.9.8.1841

53. Spanova M., Daum G. Squalene – biochemistry, molecular biology, process biotechnology, and applications. European Journal of Lipid Science and Technology. 2011;113(11):1299-1320. DOI: 10.1002/ejlt.201100203

54. Stafford H.A. Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Science. 1994;101(2):91-98. DOI: 10.1016/0168-9452(94)90244-5

55. Sunil M., Hariharan A.K., Nayak S., Gupta S., Nambisan S.R., Gupta R.P. et al. The draft genome and transcriptome of Amaranthus hypochondriacus: a C4 dicot producing high-lysine edible pseudo-cereal. DNA Research. 2014;21(6):585-602. DOI: 10.1093/dnares/dsu021

56. Suo J., Tong K., Wu J., Ding M., Chen W., Yang Y. et al. Compa rative transcriptome analysis reveals key genes in the regulation of squalene and β-sitosterol biosynthesis in Torreya grandis. Industrial Crops and Products. 2019;131:182-193. DOI: 10.1016/j.indcrop.2019.01.035

57. Suresh S., Chung J.W., Cho G.T., Sung J.S., Park J.H., Gwag J.G. et al. Analysis of molecular genetic diversity and population structure in Amaranthus germplasm using SSR markers. Plant Biosystems. 2014;148(4):635-644. DOI: 10.1080/11263504.2013.788095

58. Tome D., Bos C. Lysine requirement through the human life cycle. The Journal of Nutrition. 2007;137(6):1642S-1645S. DOI: 10.1093/jn/137.6.1642S

59. Торрес Миньо К.Х. Оценка сортов амаранта с использованием биохимических и молекулярных методов для создания функциональных продуктов на основе листовой биомассы: дис. ... канд. с.-х. наук. Москва; 2015. DOI: 10.13140/RG.2.2.28484.68484

60. Vauterin M., Frankard V., Jacobs M. The Arabidopsis thaliana dhdps gene encoding dihydrodipicolinate synthase, key enzyme of lysine biosynthesis, is expressed in a cell-specific manner. Plant Molecular Biology. 1999;39(4):695-708. DOI: 10.1023/a:1006132428623

61. Velasco A.M., Leguina J.I., Lazcano A. Molecular evolution of the lysine biosynthetic pathways. Journal of Molecular Evolution. 2002;55:445-459. DOI: 10.1007/s00239-002-2340-2

62. Venskutonis P.R., Kraujalis P. Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses. Comprehensive Reviews in Food Science and Food Safety. 2013;12(4):381-412. DOI: 10.1111/1541-4337.12021

63. Wang C., Guo L., Li Y., Wang Z. Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC Systems Biology. 2012;6(Suppl 2):S9. DOI: 10.1186/1752-0509-6-S2-S9

64. Wang J.L., Klessig D.F., Berry J.O. Regulation of C4 gene expression in developing amaranth leaves. The Plant Cell. 1992;4(2):173-184. DOI: 10.1105/tpc.4.2.173

65. Wang Y., Nii N. Changes in chlorophyll, ribulose bisphosphate carboxylase–oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. The Journal of Horticultural Science and Biotechnology. 2000;75(6):623-627. DOI: 10.1080/14620316.2000.11511297

66. Wheeler G., Jones M.A., Smirnoff N. The biosynthetic pathway of vitamin C in higher plants. Nature. 1998;393(6683):365-369. DOI: 10.1038/30728

67. Wybraniec S., Stalica P., Spórna A., Nemzer B., Pietr z kowski Z., Michałowski T. Antioxidant activity of betanidin: electrochemical study in aqueous media. Journal of Agricultural and Food Chemistry. 2011;59(22):12163-12170. DOI: 10.1021/jf2024769

68. Xu F., Sun M. Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. Molecular Phylogenetics and Evolution. 2001;21(3):372-387. DOI: 10.1006/mpev.2001.1016

69. Yabuta Y., Mieda T., Rapolu M., Nakamura A., Motoki T., Maruta T. et al. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. Journal of Experimental Botany. 2007;58(10):2661-2671. DOI: 10.1093/jxb/erm124

70. Железнов А.В., Железнова Н.Б., Бурмакина Н.В., Юдина Р.С. Амарант: научные основы интродукции. Новосибирск: Гео; 2009.

71. Zheng X., Liu S., Cheng C., Guo R., Chen Y., Xie L. et al. Cloning and expression analysis of betalain biosynthesis genes in Amaranthus tricolor. Biotechnology Letters. 2016;38(4):723-729. DOI: 10.1007/s10529-015-2021-z

72. Zhu-Shimoni J.X., Lev-Yadun S., Matthews B., Galili G. Expression of an aspartate kinase homoserine dehydrogenase gene is subject to specific spatial and temporal regulation in vegetative tissues, flowers, and developing seeds. Plant Physiology. 1997;113(3):695-706. DOI: 10.1104/pp.113.3.695


Для цитирования:


Щербань А.Б. Физиолого-биохимические и генетические основы селекции амаранта (Amaranthus L.) для пищевых и кормовых целей (обзор). Труды по прикладной ботанике, генетике и селекции. 2020;181(4):213-221. https://doi.org/10.30901/2227-8834-2020-4-213-221

For citation:


Shcherban A.B. Physiological, biochemical and genetic bases of amaranth (Amaranthus L.) breeding for food and feed purposes (a review). Proceedings on applied botany, genetics and breeding. 2020;181(4):213-221. (In Russ.) https://doi.org/10.30901/2227-8834-2020-4-213-221

Просмотров: 122


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)