Structural variability of sunflower gene for methionine-rich albumin SFA8
https://doi.org/10.30901/2227-8834-2018-4-91-103
Abstract
Background. The 2S albumins of sunflower and other oilseed plants possess a high nutritional quality, the defense activity against fungi diseases casual gents and also valuable functional properties. The major component of albumin fraction, the SFA8 protein consists of 103 amino acid residues among which methionine constitutes 15 Mole %. In the cultivated sunflower gene pool the SFA8 structural gene is represented by the two alleles the products of which have different isoelectric points and differ by the electrophoretic mobility, however molecular mechanisms of the polymorphism are still unknown. Results. The amplified sequences of the SFA8 gene from seven Helianthus annuus L. accessions and three accessions of wild Helianthus L. species from VIR collection were sequences. The intron of 258-303 bp length depending on the genotype was firstly found in the central part of the gene. The length of the first exon constitutes 99 bp, the second exon is of 210 bp length. The nucleotide and translated amino acid sequences are polymorphic among different genotypes. The line VIR 130 in which the two expressing SFA8 proteins, the normal polypeptide with isoelectric point (pI) approximately 6.0 (normal SFA8) and its allelic variant with pI 6.5 (variant SFA8) have been earlier revealed possesses two types of the SFA8 encoding sequence. In one sequence the substitution 108С—G is present that results in the substitution of the polar uncharged amino acid serine for the positively charged arginine and respectively in alteration of the protein charge and isoelectric point. The intron sequence is also polymorphic and characterized by the presence of indels of approximately 45 bp. The intron sequences of all accessions contain dinucleotides GT at the 5΄ end and AG at the 3΄ end which are characteristic for consensus sequences of splicing sites in the U2-type introns. The variants of the secondary structure of the SFA8 intron sequences of H. argophyllus Torr. & A. Gray and all the analyzed H. annuus genotypes are similar and differ from those of H. petiolaris Nutt. and H. giganteus L. Conclusions. The data on the SFA8 gene sequence polymorphism are important understanding the molecular mechanisms of genotypic differences in biochemical and functional properties of the protein, and he revealed differences in the intron secondary structure can be important for understanding expression patterns of the protein.
About the Authors
I. N. AnisimovaRussian Federation
N. V. Alpatieva
Russian Federation
S. V. Goryunova
Russian Federation
D. V. Goryunov
Russian Federation
Al. V. Konarev
Russian Federation
V. A. Gavrilova
Russian Federation
E. E. Radchenko
Russian Federation
References
1. Anisimova I. N., Alpat`eva N. V., Timofeeva G. I. Skrining geneticheskikh resursov rastenii s ispolzovaniem DNK markerov: osnovnye principy, vydelenie DNK, PCR, elektroforez v agaroznom gele. Metodicheskie ukazaniya VIR (Ed. by E.E. Radchenko). St. Petersburg : VIR, 2010, 30 p. [in Russian]
2. Gavrilova V. A., Anisimova I. N. Genetics of cultivated plants. Sunflower. St. Petersburg : VIR, 2003, 197 p. [in Russian]
3. Agizzio A. P., Da Cunha M., Carvalho A. O., Oliveira M. A., Ribeiro S. F., Gomes V. M. The antifungal properties of a 2S albumin-homologous protein from passion fruit seeds involve plasma membrane permeabilization and ultrastructural alterations in yeast cells // Plant Sci., 2006, vol. 171, no. 4, pp. 515−522. DOI: 10.1016/j.plantsci.2006.06.001.
4. Anisimova I. N., Fido R. J., Tatham A. S., Shewry P. R. Genotypic variation and polymorphism of 2S albumins of sunflower // Euphytica, 1995, vol. 83, pp. 15–23.
5. Anisimova I. N., Konarev A. V., Gavrilova V. A., Rozhkova V. T., Fido R. J., Tatham A. S., Shewry P. R. Polymorphism and inheritance of methionine-rich 2S albumins in sunflower // Euphytica, 2003, vol. 129. no. 1, pp. 99–107. DOI: 10.1023/A:1021562712945.
6. Badouin H., Gouzy G., Grassa C. J. et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution // Nature, 2017, vol. 546, pp. 148−152. DOI: 10.1038/nature22380.
7. Elliott A. G., Delay C., Liu H., Phua Z., Rosengren K. J., Benfield A. H., Panero J. L., Colgrave M. L., Jayasena A. S., Dunse K. M., Anderson M. A. Evolutionary origins of a bioactive peptide buried within preproalbumin // The Plant Cell, 2014, vol. 26, pp. 981–995. DOI 10.1105/tpc.114.123620.
8. Franke B., Colgrave M. L., Mylne J. S., Rosengren K. J. Mature forms of the major seed storage albumins in sunflower: A mass spectrometric approach // 2016, vol. 147, no. 1, pp.177−186. DOI: 10.1016/j.jprot.2016.05.004.
9. Jayasena A. S., Franke B., Rosengren J., Mylne J. S. A tripartite approach identifies the major sunflower seed albumins // Theor. Appl. Genet., 2016, vol. 129, no. 3, pp. 613−629. DOI: 10.1007/s00122-015-2653-3.
10. Kortt A. A., Caldwell J. B. Low molecular weight albumins from sunflower seed: identification of a methionine-rich albumin // Phytochemistry, 1990, vol. 29, no. 9, pp. 2805−2810.
11. Kortt A. A., Caldwell J. B., Lilley G. G., Higgins T. J. V. Amino acid and cDNA sequences of a methioninerich 2S protein from sunflower seed (Helianthus annuus L.) // Eur. J. Biochem., 1991, vol. 195, pp. 329−334. DOI: 10.1111/j.1432-1033.1991.tb15710.x.
12. Konarev Al. V., Gavrilova V. A., Rozhkova V. T., Fido R. J., Tatham A. S., Shewry P. R. Novel proteinase inhibitors in seeds of sunflower (Helianthus annuus L.): polymorphism, inheritance and properties. Theor. Appl. Genet., 2000, vol. 100, no. 1, pp. 82−88. DOI: 10.1007/s001220050012.
13. Konarev A. V., Anisimova I. N., Gavrilova V. A., Vachrusheva T. E., Konechnaya G. Y., Lewis M., Shewry P. R. Serine proteinase inhibitors in the Compositae: Distribution, polymorphism and properties // Phytochemistry, 2002, vol. 59, pp. 279−291. DOI: 10.1016/S0031-9422(01)00463-0.
14. Kreis M., Forde B. G., Rahman S., Miflin B. J., Shewry P. R. Molecular evolution of the seed storage proteins of barley, rye and wheat // J. Mol. Biol., 1985, vol. 183, no. 3, pp. 499−502.
15. Lin C. L., Taggart A. J., Fairbrother W. G. RNA structure in splicing: An evolutionary perspective // RNA Biol., 2016, vol. 13, no. 9, pp. 766−771. DOI: 10.1080/15476286.2016.1208893.
16. Luckett S., Garcia R. S., Barker J. J., Konarev A. V., Shewry P. R., Clarke A. R., Brady R. L. High resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds // J. Mol. Biol., 1999, vol. 290, pp. 525−533. DOI: 10.1006/jmbi.1999.2891.
17. Meyer M., Plass M., Pérez-Valle J., Eyras E., Vilardell J. Deciphering 3'ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing // Mol. Cell., 2011, vol. 43, no. 6, pp. 1033–1039. DOI: 10.1016/j.molcel.2011.07.030.
18. Moreno F.J., Clemente A. 2S Albumin Storage Proteins: What makes them food allergens? // Open Biochem. J., 2008, vol. 2, pp. 16−28. DOI: 10.2174/1874091X00802010016.
19. Mylne J. S., Colgrave M. L., Daly N. L., Chanson A. H., Elliott A. G., Mc Callum E. J., Jones A., Craik D. J. Albumins and their processing machinery are hijacked for cyclic peptides in sunflower // Nat. Chem. Biol., 2011, vol. 7, pp. 257−259. DOI: 10.1038/nCHeMBIO.542.
20. Odintsova T. I., Rogozhin E. A., Sklyar I. V., Musolyamov A. K., Kudryavtsev A. M., Pukhalsky V. A., Smirnov A. N., Grishin E. V., Egorov T. A. Antifungal activity of storage 2S albumins from seeds of the invasive weed dandelion Taraxacum officinale Wigg. // Protein and Peptide Letters, 2010, vol. 17, no. 4, pp. 522−529. DOI: 10.2174/092986610790963591.
21. Pandya M. J., Sessions R. B., Williams P. B., Dempsey C. E., Tatham A., Shewry P. R., Clarke A. R. Structural characterization of a methionine-rich, emulsifying protein from sunflower seed // Proteins: Structure Function, and Bioinformatics, 2000, vol. 38, no. 3, pp. 341−349. DOI: 10.1002/(SICI)1097- 0134(20000215)38:33.0.CO;2-D.
22. Radauer C., Breiteneder H. Evolutionary biology of plant food allergens // J. Allergy Clin. Immunol. 2007, vol. 120, no. 3, pp. 518–525. DOI: 10.1016/j.jaci.2007.07.024.
23. Shewry P. R., Napier J. A., Tatham A. S. Seed Storage Proteins: Structures and Biosynthesis // The Plant Cell, 1995, vol. 7, no. 7, pp. 945−956. DOI: 10.1105/tpc.7.7.945.
24. Shewry P. R., Tatham A. S. The characteristics, structures and evolutionary relationships of prolamins. In : Seed proteins (eds. P. R. Shewry, R. Casey). Kluwer Academic Publishers, the Netherlands, pp. 11−33.
25. Sun J., Zhao H., Nie L., Yi J., Zhang Q.-L. The intron in an albumin gene from sunflower increases expression of SFA8. In: Molecular breeding of forage and turf (eds. H. Budak, G. Spangenberg) 2015, pp. 183−191. DOI: 10.1007/978-3-319-08714-6_16.
26. Tabe L. M., Higgins C. M., McNabb W. C., Higgins T. J. Genetic engineering of grain and pasture legumes for improved nutritive value // Genetica, 1993, vol. 90, no. 2–3, pp. 181−200.
27. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction // Nucleic Acids Res., 2003, vol. 31, no. 13, pp. 3406−3415. DOI: 10.1093/nar/gkg595.
28. Youle R. J., Huang A. H. C. Occurrence of low molecular weight and high cysteine containing albumin storage proteins in oilseeds of diverse species // Am. J. Bot., 1981, vol. 68, no. 1, pp. 44−48. DOI: 10.2307/2442990.
Review
For citations:
Anisimova I.N., Alpatieva N.V., Goryunova S.V., Goryunov D.V., Konarev A.V., Gavrilova V.A., Radchenko E.E. Structural variability of sunflower gene for methionine-rich albumin SFA8. Proceedings on applied botany, genetics and breeding. 2018;179(4):91-103. (In Russ.) https://doi.org/10.30901/2227-8834-2018-4-91-103