Phytotoxicity of aluminum ions
https://doi.org/10.30901/2227-8834-2018-3-315-331
Abstract
Russia contains the largest areas of soil with excessive acidity in the world. According to the results of agrochemical surveys of arable lands, the area of acidic soils (pH less than 5.5) is currently about 65 million hectares. The losses in agricultural products calculated in grain per year amount to 15-20 million tons. The negative effect of acid soil on plants is explained by the low content of exchangeable bases and the presence of large quantities of mobile forms of aluminum (2-20% from the weight of the soil). Absorption and assimilation of aluminum by plants depends on the forms by which it is represented in acidic soils. The importance of aluminum in plant life is ambiguous, as the reports on the toxic effect of aluminum ions are more numerous. High concentrations of aluminum directly or indirectly affect the processes of vital activity of plants: water regime, nitrogen metabolism, mineral nutrition, photosynthesis, oxidation-reduction reactions. Phytotoxic metal ions also affect various physiological and biochemical processes in plants, stimulate numerous anatomical and morphological changes. Excess aluminum ions in soil disrupt the mineral nutrition of plants. Various agrochemical methods are used to reduce the harmful toxic effect of aluminum ions on plants. Most plants are sensitive to high concentrations of aluminum. The resistance to toxic concentrations of metal ions in plants is due to the action of several mechanisms that are characteristic of each species. Some species of plants have protective mechanisms by which the adverse effects of toxic ions are reduced or completely eliminated. It has been established that root growth is the better indicator of resistance than the growth of the above-ground plant parts. The methods of diagnosing sensitivity to aluminum in the early stages of plant development are based on the change in root length after exposure to a stress factor. Knowledge of the genetic and physiological foundations of plant resistance to high concentrations of ions of heavy metals and aluminum is necessary for the search for tolerant genotypes of cultivated plants.
About the Author
O. V. YakovlevaRussian Federation
42, 44, Bolshaya Morskaya St., St. Petersburg, 190000
References
1. Alam S. M. Influence of aluminum on plant growth and mineral nutrition of barley // Commun. Soil Sci. Pl. Anal.. 1981, vol. 12, pp. 121-138.
2. Alam S. M. Effect of aluminum on the dry matter and mineral content of rice // J. Sci. Tech., 1983, vol. 7, no. 1/2, pp. 1-3.
3. Amosova N. V., Nikolaeva O. N., Synzynys B. I. Mekhanizmy alyumotolerantnosti u kuliturnykh rasteniy // Sel’skokhozyaistvennaya biologia, 2007, vol. 1, pp. 36-42 [in Russian]
4. Amunova O. S. Fotosinteticheskiy apparat yarovoy myagkoy pshenitsy v usloniyakh stressa, obuslovlennogo ionami alyuminiya // Metody i tekhnologii v selektsii rasteniy i rastenievodstve. Kirov : NIISKh Severo-Vostoka, 2016, pp. 9-12 [in Russian]
5. Aniol A. Induction of aluminum tolerance in wheat seedlings by low doses of aluminum in nutrient solution // Plant Physiol., 1984, vol. 75, pp. 551-555.
6. Aniol A. Aluminium uptake by roots of rye seedlings of differing tolerance to aluminium toxicity // Euphytica, 1996, vol. 92, no. 1/2, pp. 155-162.
7. ArchambaultD. J., Zhang G., Taylor G. J. Accumulation of Al in rootmucilage of an Al-resistant cultivar of wheat // Plant Physiol., 1996, vol. 112, pp. 1471-1478.
8. Avdonin N. S. Povyshenie plodorodiya pochv. Moscow : Kolos, 1969. 303 p. [in Russian]
9. Baker A. J. M., Walker P. L. Physiological responses of plants to heavymetals and the quantification of tolerance and toxicity // Chem. Speciation Bioavail., 1989, vol. 1, pp. 7-17.
10. BarlettR., Riego D. C. Toxicity of hydroxy aluminium in relation to pH and phosphorus // Soil Sci., 1972, vol. 114, no. 3, pp. 194-200.
11. Basu A., Basu U., Taylor G. J. Induction of microsomal membrane proteins in roots of an aluminium-resistant cultivar of Triticum aestivum L. under conditions of aluminium stress // Plant Physiol., 1994, vol. 104, pp. 1007-1013.
12. BennetR. J., Breen C. M., FeyM. V. The primary site of aluminum injury in the root of Zea mays L. // South Afr. J. Plant Soil., 1985a, vol. 2, pp. 8-17.
13. BennetR. J., Breen C. M., FeyM. V. Aluminium uptake sites in the primary roots of Zea mays L. // South. Afr. J. Plant Soil., 1985b, vol. 2, pp. 1-7.
14. BennetR. J., Breen C. M., Bandy V. Aluminium toxicity and regeneration of the root cap. Preliminary evidence for a Golgi apparatus-derived morphogen in the primary root of Zea mays // South. Afr. J. Bot., 1985c, vol. 51, pp. 363-370.
15. Berezovsiy K. K., Klimashevskiy E. L. O vliyanii podvizhnogo alyuminiya na assimilyathiyu neorganicheskogo azota kornyami gorokha // In : Sort I udobrenie. Irkutsk, 1974, pp. 225-235 [in Russian]
16. Bernathskaya M. L. Genotipicheskaya spetsifika fosfornogo obmena rasteniy gorokha v svyazi s toksichnostyu aluminiya : аvtoref. diss. ... kand. boil. nauk. Moscow : MGU, 1974, 21 p. [in Russian]
17. Bernathskaya M. L., Klimashevskiy E. L., Shmulevskaya T. A. Vliyanie Al na dykhanie I aktivnost poverkhnostnykh fosfataz rasteniy rastushchey chasti korney gorokha // Fiziol. i biokhim. kult. rast., 1976, vol. 8, no. 1, p. 25. [in Russian]
18. Blaha L., Janacek J., Opatrna J. Evalution of wheat cultivars root traits at standard pH (6,5) and low pH (4,5) and higher concentration of aluminium ions // Biol. plant., 1994, vol. 36, p. 186.
19. Bojorquez-Quintal J. E. A., Escalante-Magana C., Echevarria-Machado I., Martinez-Estevez M. Aluminum, a frend or of higher plants in acid soils // Front Plant Sci., 2017, vol. 8. DOI: 10/3389/fpls/2017.01767.
20. Bose J., Babourina O., Rengel Z. Role of magnesium in alleviation of aluminium toxicity in plants // J. Exp. Bot., 2011, vol. 62, pp. 2251-2264. DOI: 10.1093/jxb/erq456.
21. Bose J., Babourina O., Shabala S., Rengel, Z. Low-pH and aluminum resistance in Arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots // Plant Cell Physiol., 2013, vol. 54, pp. 1093-1104. DOI: 10.1093/pcp/pct064.
22. Camargo C. E. O. Influance of calcium levels combined with salt concentrations on the tolerance of wheat to aluminum toxicity in nutrient solution // Bragantia, 1985, vol. 44, no. 2, pp. 659-668.
23. Cambraia J., Pires D. L. F. J., Estevao M. D. M., OlivaM. A. Effects of aluminum on the levels of magnesium, iron, manganese and cooper in sorgum // Rev. Ceres., 1983, vol. 39, no. 167, pp. 45-54.
24. Canal I. N., Mielniczuk J. Potassium absoption parameters in corn plants (Zea mays L.) as affected by aluminum-calcium interaction // Ciens. Cult. (Sao Paulo), 1983, vol. 35, no. 3, pp. 336-340.
25. Cartes P., Jara A. A., Pinilla L., Rosas A., Mora M. L. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots // Ann. Appl. Biol., 2010, vol. 156, pp. 297-307. DOI:10.1111/j.1744-7348.2010.00387.x.
26. Cartes P., McManusM., Wulff-Zottele C., Leung S., Gutierrez-Moraga A., de la LuzMoraM. Differential superoxide dismutase expression in ryegrass cultivars in response to short term aluminum stress // Plant and Soil., 2012, vol. 350, pp. 353-363.
27. Cernohorska J., Votrubova O., DvorakM. The effact of aluminum on the electrometric characteristics of root tissue in three wheat cultivars // J. Appl. Genet., 1997, vol. 38B, pp. 283-288.
28. Chesnokova S. M., Grishina E. P. Praktikum po ekologicheskomu monitoring // Vladimir, Izd-vo Vladim. Gos. Universiteta, 2004, 144 p. [in Russian]
29. Cheung W. Y. Calmodulin: An overview // Fed. Proc., 1982, vol. 41, pp. 2253-2257.
30. Clark J. M., Leisle D., De Pauw R. M., Thiessen L. L. Registration of five pairs of durum wheat genetic stocks near-isogenic for cadmium concentration // Crop Sci., 1997, vol. 37, p. 297.
31. Clark R. B. Effect of aluminum on growth and mineral elements of Al-tolerant and Al-intolerant corn // Plant Soil., 1977, vol. 47, pp. 653-662.
32. Clarkson D. T. The effect of aluminium and other trivalent metal cations on cell division in apicies of Allium сера // II Ann. bot., 1965, vol. 29, no. 5, pp. 309-315.
33. Clarkson D. T. Effect of aluminium on the uptake and metabolism of phosphorus by barley seedlings // Plant Physiol., 1966, vol. 41, no. 1, pp. 165-172.
34. Clarkson D. T. Interaction between Al and phosphorus on root surface and cell wall material // Plant and Soil., 1967, vol. 22, no. 3, pp. 347-356.
35. Clarkson D. T., Sanderson J. Inhibition of the uptake and long distanse transport of Ca by Al and other polyvalent cations // J. Exp. Bot., 1971, vol. 22, no. 75, pp. 837-851.
36. Collins N. C., Shirley N. J., SaeedM., PallottaM., Gustafson J. P. An ALMT1 gene cluster controlling aluminum tolerance at Alt4 locus of rye (Secale cereale L.) // Genetics, 2008, vol. 179, no. 1, pp. 669- 682. DOI: 10.1534/genetics.107.083451.
37. Delhaize E., Ryan P. R., Rendall P. J. Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from rootapices // Plant Physiol., 1993, vol. 103, no. 2, pp. 695-702.
38. Ekologo-ekonomicheskie osnovy i rekomendatsii po izvestkovaniyu, adaptirovannye k konkretnym pochvennym usloviyam // Pod. red. A. N. Nebolisina, V. G. Sycheva. Moscow : Izd-vo TsINAO, 2000, 80 p. [in Russian]
39. Ellenberg H. I. Mineralstoffe fur die planzliche Besiedlung des Bodens. A. Bodenreaktion (einschlislich Kalkafrage) // Hdb. Pfl. Physiol., 1958, no. 4, pp. 638-709.
40. Ernst W. H. O. Schwermetallpflanzen // In : Kinzel, H. (Ed) Pflanazenekologie und Mineralstoffwechsel. Ulmer, Stuttgart., 1982, pp. 472-506.
41. Fagria N. R. Differential tolerance of rice cultivars to aluminum in nutrient solution // Pesq. Agropecu. Bras., 1982, vol. 17, no. 1, pp. 1-9.
42. Famoso A, ClarkR. T., ShaffJ. E., CraftE., McCouch S.R., Kochian L. V. Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms // Plant. Physiol., 2010, vol. 153, no. 4, pp. 1678-1691. DOI: 10.1104/pp.110.156794.
43. Fiziologicheskie osnovy selektsii rasteniy // Ed. G. V. Udovenko, V. S. Shevelukhi. St. Petersburg : VIR, 1995, vol. II, ch. I, 293 p. [in Russian]
44. Foy C. D. Response of cotton varieties to stress factors on acid soil // Abstr. Cotton Improvement Conf. Dallas, Texas. 1974, p. 23.
45. Foy C. D. Physiological effects of hydrogen, aluminum and manganese toxicities in acid soils // Agronomy Monogr., 1984, vol. 12, pp. 57-97.
46. Foy C. D. Plant adaptation to acid, aluminum-toxic soils // Comm. Soil Sci.Plant Anal., 1988, vol. 19, pp. 959-987.
47. Foy C. D. Tolerance of barley cultivars to an acid, aluminotoxic subsoil related to mineral element concentration in their shoots // J. Plant Nutr., 1996, vol. 19, pp. 1361-1380.
48. Foy C. D., Armiger W. H., Fleming A. L., Zaumayer W. J. Differential tolerance of diye bean, snapbean and lima bean varieties to an acid soil high in exchangable aluminium // Agr. J., 1967, vol. 59, pp. 561-563.
49. Foy C. D., Fleming A. L. The physiology of plant tolerance of excess available aluminum and manganese in acid soils // In : G.A. Jung (Ed) Crop tolerance to suboptimal land conditions, 1978, pp. 301-328.
50. Foy C. D., Fleming A. L. Aluminum tolerances of two wheat genotypesrelated to nitrate reductase activities // J. Plant Nutr., 1982, vol. 5, pp. 1313-1333.
51. Furlani P. R., ClarkR. B. Screening sorghum for aluminum tolerance in nutrient solutions // Agron. J., 1981, vol. 73, pp. 587-594.
52. Ganzha B. A. K voprosu o deystvii Al-ionov I H-ionov na rasteniya na podzolistoy pochve // Pochvovedenie, 1941, no. 1, pp. 22-39 [in Russian]
53. Genkel P. A. Fiziologiya ustoychivosti rastitelinykh organizmov // Fiziol. s-kh. rast., 1976, vol. 3, pp. 87265 [in Russian]
54. GershtA. N., Kreyer K. G., Bittutskiy L. I. et all. Dykhatelynyy gazoobmen yachmenya pri povyshennoy kislotnosti korneobitaemoy sredy // Tez. Dokl. Vses. Konf. “Problemy I puti povysheniya ustoychivosti rasteniy k boleznyam I ekstremalinym usloviyam sredy v svyazi s zadachami selektsii”. Leningrad, 1981, ch. I, pp. 122-123 [in Russian]
55. GerzabekM. H., Edelbauer A. Aluminum toxicity in corn (Zea mays L.). Influence of aluminum on the yields and the nutrient contents // Bodenkultur., 1986, vol. 37, no. 4, pp. 309-319.
56. GOST 17.4.3.04-85 Okhrana prirody. Pochvy. Obshchie trbovaniya k kontrolu I okhrane ot zagryazneniya // Moscow : Standartinform, 2008, 4p. [in Russian]
57. Guerrier G. Relation between sorghum root system and aluminum toxicity // J. Pl. Nutr., 1982, vol. 5, no. 2, pp. 123-136.
58. Han Y., Zhang W., Zhang B., Wang W., Ming F. One novel mitochondrial citrate syntase from Oryza sativa L. can enhance aluminum tolerance in transgenic tobacco // Mol. Biotechnol., 2009, vol. 42, no. 3, pp. 299-305. DOI: 10.1007/s12033-009-9162-z.
59. Hartwell B. L., Pember F. R. The presence of aluminum as a reason for the differencein the effect of so-called acid soil on barley and rye // Soil Sci., 1918, vol. 6, pp. 259-281.
60. Haug A., Shi B. Biochemical basis of aluminum tolerance in plant cells // In : R. J. Wright, V. C. Baligar, R. P. Murrmann (Eds). Plant-soil interactions atlow pH. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991, pp. 839-850.
61. Helyar K. R. Effects of aluminum and manganese toxicity on legume growth // In : C. S. Andrew et E. J. Kamprath (Eds.) Mineral nutrition of legumes in tropical and subtropical soils. CSIRO, Melbourne, Australia. 1978, pp. 207-231.
62. Horst W. J., Wagner A., Marschner H. Mucilage protects root meristemsfrom aluminium injury // Z. Pflanzenphysiol., 1982, vol. 105, pp. 435-444.
63. Horst W. J., Wagner A., Marschner H. Effect of aluminum on growth, cell-division rate and mineral alement contents in roots of Vigna unguiculata genotypes // Z. Pflanzenphysiol., 1983, vol. 109, pp. 95-103.
64. Horst W. J., Goppel H. Aluminum - Toleranz von Ackerbohne (Vicia faba), Lupine (Lupinus luteus), Gerste (Hordeum vulgare) und Roggen (Secale cereale) // Z. Pflanzenernaehr., 1986, vol. 149, pp. 94- 109.
65. Howeler R. H., Cadavid L. F. Screening of rice cultivars for tolerance to Al toxicity in nutrient solutions as compared with a field screening method // Agron. J., 1976, vol. 68, pp. 551-555.
66. Howeler R. H., Sieverding E., Saif S. Practical aspects of micorrhizaltechnology in some tropical crops and pastures // Plant Soil., 1987, vol. 100, pp. 249-283.
67. Hu Z., Cools T., De Veylder L. Mechanisms used by plants to cope with DNA damage // Annu. Rev. Plant Biol., 2016, vol. 67, pp. 439-462. DOI: 10.1146/annurev-arplant-043015-111902.
68. Huang J. W., Pellet D. M., Papernik L. A., Kochian L. V. Aluminium interactions with voltage-dependent calcium transport in plasma membrane vesicles isolated from roots of aluminium-sensitive and tolerante wheat cultivars // Plant Physiol., 1996, vol. 110, pp. 561-569.
69. Huet D. O., Menary R. C. Aluminum uptake by excised roots of cabbage, lettuce and kikuyu grass // Austral. J. Pl. Physiol., 1979, vol. 6, pp. 643-653.
70. Ito D., Shinkai Y., Kato Y., Kondo T., Yoshida K. Chemical studies on different color development in blue-and red-colored sepal cells of Hydrangea macrophylla // Biosci. Biotechnol. Biochem., 2009, vol. 73, pp. 1054-1059. DOI: 10.1271/bbb.80831.
71. Jackson W. A. Physiological effects of soil acidity // Agronomy, 1967, vol. 12, pp. 43-124.
72. Jelic M. The investigation of mineral nutrition of winter wheat growing insmonitza in degradation // PhD thesis. Agricultural faculty Zernun., 1996, pp. 1-121.
73. Karmanenko N. M. Response to low temperature, soil acidification and aliminium in the varieties of cereal crops // Sel’skokhozyaistvennaya biologia, 2014, no. 5, pp. 66-77. DOI: 10.15389/agrobiology.2014.5.66rus [in Russian]
74. Keltjens W. G. Short-ferm effects of Al on nutrient uptake, H+ efflux, root respiration and nitrate reductase activity of two sorghum genotypes differing in Al-susceptibility // Commun. Soil Sci. and Plant Anal., 1988, vol. 19, no. 7-12, pp. 1155-1163.
75. Kerridge P. C., Dawson D. M., Moore D. P. Separation of degrees of aluminum tolerance in wheat // Agron. J., 1971, vol. 63, pp. 586-591.
76. Klimashevskiy E. L. Problema genotipicheskoy spetsifiki kornevogo pitaniya rasteniy // In : Sort i udobrenie. Irkutsk, 1974, pp. 11-53 [in Russian]
77. Klimashevskiy E. L. Ustoychivosti rasteniy r kislotnosti sredy I khimicheskaya melioratsiya pochv // Dokl. VASChNIL, 1982, no. 10, pp. 28-34 [in Russian]
78. Klimashevskiy E. L. Otsenka kislotoustoychivosti rasteniy // Diagnostika ustoychivosti rasteniy k stressovym vozdeystviyam. Metodicheskoe rukovodstvo // Leningrad : VIR, 1988, pp. 97-100 [in Russian]
79. Klimashevskiy E. L. Geneticheskiy aspect mineralinogo pitaniya rasteniy // Moscow : Agropromizdat, 1991, 415 p. [in Russian]
80. Klimashevskiy E. L. Fiziologo-geneticheskie osnovy agrokhimicheskoy effektivnosti rasteniy // In : Fiziologicheskie osnovy agrokhimicheskoy effektivnosti rasteniy. SPb : VIR, 1995, vol. 2, ch. 1, pp. 97-157 [in Russian]
81. Klimashevskiy E. L., Markova Yu. A., Malysheva A. S. Genotipicheskaya spetsifika pogloshcheniya I lokalizatsii Al-ionov rasteniyami gorokha // Dokl. AN SSSR, 1972, vol. 203, pp. 711-713 [in Russian]
82. Klimashevskiy E. L., Markova Yu. A., Lebedeva I. S. Vzaimodeystvie Al I P na poverkhnosti korney I v kletochnykh stenkakh // Dokl. VASKHNIL, 1978, no. 8, pp. 6-10 [in Russian]
83. Kochian L. V., Hoekenga O. A., PinerosM. A. How do crop plants tolerate acid soils?-mechanisms of aluminium tolerance and phosphorous efficiency // Annu. Rev. Plant Biol., 2004, vol. 55, pp. 459-493. DOI: 10.1146/annurev.arplant.55.031903.141655.
84. Kopittke P. M., Moor K. L., Lombi E., Gianoncelli A., Ferguson B. J., Blamey F. P. C. et all. Identification of the primary lesion of toxic aluminum in plant roots // Plant Physiol., 2015, vol. 167, pp. 1402-1411. DOI: 10.1104/pp.114.253229.
85. Kottke I. Ectomycorrhizas - organs for uptake and filtering of cations // In : D. J. Read, D. H. Lewis, A. H. Fitter, I. J. Alexander (Eds) Mycorrhizas in Ecosystems. CAB International, Wallingford, UK, 1992, pp. 316-322.
86. Kovacevic G., Kastiri R., Merkulov Lj. Effect of excess heavy metal concentrations on leaf anatomy of wheat plants // The 11th Congress of FESPP, Varna, Bulgaria. 1998, pp. 271.
87. Koyama H., Toda T., Yokota S. et all. Effects of aluminium and pH on root growth and cell viability in Arabidopsis thaliana strain landsberg in hydroponic culture // Plant Cell. Physiol., 1995, vol. 36, pp. 201-205.
88. Krill A., Kirst M., Kochian L. V., Bukler E. S., Hoekenga O. A. Association and linkage analysis of aluminum tolerance genes in maize // PLoS One, 2010, vol. 5, no. 4. p. 9958. DOI: 10.1371/journal.pone.0009958.
89. Kumar Roy A., Sharma A., Talukder G. Some aspects of aluminum toxicity in plants // The Bot. Rev., 1988, vol. 54, pp. 145-178.
90. Larcher W. Physiological Plant Ecology // Springer-Verlag, New York, Berlin, Heidelberg. 1995, pp. 136-138.
91. Maron L. G., PinerosM. A., Gumaraes C. T., Magalhaes J. V., Pleiman J., Mao C., Shaff J., Belicuas S. N., Kochian L. V. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) famly of transporters potentially underlie two major aluminum tolerance QTLs in maize // Plant. J., 2010, vol. 61, no. 5, pp. 728-740. DOI: 10.1111/j.1365-313X.2009.04103.x.
92. Maroni G. Animal metallothionein // In : A. J. Shaw (Ed) Heavy metal tolerance in plants. CRS Press Boca Raton, FL., 1989, pp. 216-229.
93. Mathan K. K. Effect of various levels of aluminum on the dry matter yeld, content and uptake of phosphorus, aluminum, manganese, magnesium and iron in maize // Madras Agric. J., 1980, vol. 67, no. 11, pp. 751-757.
94. Matsumoto H., Moromura S., Hirasava E. Localization of absorbed aluminum in plant tissues and its toxicity studies the inhibition of pea root elongation // In : K. Kudrev et al. (eds) Mineral nutrition of plant, 1979, vol. 1, pp. 171-94.
95. McLeanF. T., GilbertB. E. The relative aluminum tolerance of cropplants // Soil Sci., 1927, vol. 24, pp. 163-175.
96. Mesenco M. M. The specific «acid growth» in roots and reaction on soe stress factor // Symp. Plant under Enviromental Stress. Internat. Symp. Moskov K. A. Timiryazev Instit. of Plant Physiol., 2001, p. 173.
97. Miyazawa A. N., Maeda N., Kitazawa A. Aluminium toxicity on the growth of rice plants // Miyagi-Ken Nogyo Senta Kenkyu Hokuku., 1981, vol. 48, pp. 43-58.
98. Morimura S., Tarahashi E., Matsumoto H. Association of aluminium with nuclei and inhibition of cell division in onion (Alliums cepa) roots // Z. Planzenphysiol., 1978, vol. 88, pp. 395-401.
99. Mugiwara L., Floyd M., Patel S. V. Tolerances of triticale lines to manganese in soil and nutrient solution // Agron. J., 1981, vol. 73, pp. 319-322.
100. Mugwira L. M., Patel S. U. Root zone pH changes and ion uptake imbalances by triticale, wheat and rye // Agron. J., 1977, vol. 69, pp. 719-722.
101. Naidoo G., McD Stewart J., Lewi R. J. Accumulation sites of Al in snapbean and cotton roots // Agron. J., 1978, vol. 70, pp. 489-492.
102. Nebolisin A. N., Nebolisina Z. P. Dinamika kislotnosti dernovo-podzolistoy pochvy za 20-letniy period // Byul. VIUA, 1985, no. 72, pp. 36-39 [in Russian]
103. NogueirolR. C., Monteiro F. A., Azevedo R. A. Tropical soils cultivated with tomato: fractionation and speciation of Al // Environ. Monit. Assess., 2015, vol. 187, p. 160. DOI: 10.1007/s10661-015-4366-0.
104. Ohki S. Interaction forces underlyng membrane-fusion // Biophys. J., 1986, vol. 49, no. 2, pp. 16-18.
105. Ohman L. O. Equilibrium and structural studies of silicon (IV) and aluminum (III) in aqueous solutions // Plant Cell Environ., 1988, vol. II, pp. 711-714.
106. Palaveev T., Totev T. Kislotnosti pochv I metody ee ustraneniya // Moscow : Kolos, 1983, 165 p. [in Russian]
107. Palival K., Sivaguru M. Indirect effects of aluminum on the reflectance properties of rice cultivars differing in alumjnum tolerance // J. Plant Nutr., 1994, vol. 17, no. 6, pp. 883-897.
108. Pellet D. M., Grunes D. L., Kochian L. V. Organic acid exudation as an aluminium-tolerance machanism in wheat (Triticum aestivum L.) // Planta, 1995, vol. 196, pp. 788-795.
109. PelletD. M., PapernikL. A., Kochian L. V. Multiple aluminium-resistance machanism in wheat // Plant Physiol., 1996, vol. 112, pp. 591-597.
110. Pilon-Smits E. A. H., Quinn C. F., Tapken W., Malagoli M., Schiavon M. Physiological functions of beneficial elements // Curr. Opin. Plant Biol., 2009, vol. 12, pp. 267-274. DOI: 10.1016/j.pbi.2009.04.009.
111. Poukhalskaya N. V. Problem questions of aluminium toxicity // Agrocamistry. 2005, № 8, p.70-82 [in Russian]
112. Rauser W. E., Meuwly P. Retention of cadmium in roots of maize seedlings // Plant Physiol., 1995, vol. 109, pp. 195-202.
113. Robinson N. J., Jackson P. J. "Metallothionein-like" metal complexes inangiosperms; their structure and function // Physiol. Plant., 1986, vol. 67, pp. 499-506.
114. Sade H., Meriga B., Surapu V., Gadi J., Sunita M. S., Suravajhala P., Kavi Kishor P. B. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils https://www.ncbi.nlm.nih.gov/pubmed/26796895 // Biometals., 2016, vol. 29, no. 2, pp. 187-210. DOI: 10.1007/s10534-016-9910-z.
115. Samofalova I. A. Khimicheskiy sostav pochv I pochvoobrazuyushchikh porod // Permy : Izd-vo FGOU VPO “Permskaya GSKhA” , 2009, 132 p. [in Russian]
116. Sampson M., Clarkson D. T., Davies D. DNA synthesis in aluminium treated roots of barley // Science, 1965, vol. 148, pp. 1476-1477.
117. Sarkunan V., Biddappa C. C., Nayak S. K. Physiology of Al toxicity in rice // Curr. Sci., 1984, vol. 53, no. 15, pp. 822-824.
118. Schaeffer H. J., Walton J. D. Aluminium ions induce oat protoplasts to produce an extracellular (1-3) ft-D glucon // Plant Physiol., 1990, vol. 94, pp. 13-19.
119. SchmittM., Boras S., Tjoa A., Watanabe T., Jansen S. Aluminium accumulation and intra-tree distribution patterns in three arbor aluminosa (Symplocos) species from Central Sulawesi. // PLOS ONE, 2016, 11:e0149078. DOI: 10.1371/journal.pone.0149078.
120. Sharma A., Talukder G. Effects of metals on chromosomes of higher organisms // Environ. Mutagenesis, 1987, vol. 9, no. 2, pp. 191-226.
121. Shen X., Xiao X., Dong Z., Chen Y. Silicon effects on antioxidative enzymes and lipid peroxidation in leaves and roots of peanut under aluminum stress // Acta Physiol. Plant., 2014, vol. 36, pp. 3063-3069. DOI: 10.1007/s11738-014-1676-8.
122. Shugaley I. V., Garabadgiu A. V., IlyushinM. A., SudarikovA. M. Nekotorye aspekty vliyaniya alyuminiya I ego soedineniy na zhivye organizmy // Ekologicheskaya khimiya, 2012, vol. 21, no. 3, pp 172-186 [in Russian]
123. Sieverding E. Vesicular-arbuscular mycorrhizae management in tropical agrosystems // Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ), Germany, 1991, 371 p.
124. Singh K., Yoshimura E., Bughio N. et all. Complexing ability of organic acids with aluminium in acidic soils // Pros. of the XIII Intern. Plant Nutr. Colloq. 13-19 September. Tokyo. Japan., 1997, pp. 447448.
125. Slaski J. J. Effect of aluminium on calmodulin-dependent and calmodulin-independent NAD kinase activity in wheat root tips // J. Plant Physiol., 1989, vol. 133, pp. 696-701.
126. Sokolova T. A., Tolpeshta 1.1., Trofimov S. Ya. Pochvennaya kislotnosti. Kislotno-osnovnaya bufernosti pochv. Soedineniya alyuminiya v tverdoy faze pochvy I v pochvennom rastvore // Tula, 2012, 124 p. [in Russian]
127. Steffens J. C. Heavy metal stress and the phytochelatin response // In : Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Wiley-Liss., 1990, pp. 377-394.
128. Tamas L., Huttova J., Hajasova L., Mistrik I. The effect of polypeptide pattern of cell wall proteins isolated from the roots of Al-sensitive and Al-resistant barley cultivars // Acta Physiol. Plantarum, 2001, vol. 23, no. 2, pp. 161-168.
129. Tanaka A., Tanado T., Yamamoto K., Kanamura N. Comparsion of toxicity to plants among Al 3+, AlSO4+, Al-F complex ions // Soil Sci. and Plant Nutr., 1987, vol. 33, no. 1, pp. 43-55.
130. Teylor G. J. The physiology of aluminum tolerance // In : H. Singel (Ed) Metal ions in biological systems. Aluminum and its role in biology. Marcel-Dekker. New York, 1987, vol. 24, pp. 165-198.
131. Teylor G. J. The physiology of aluminum tolerance in higher plants // Comm. Soil Sci. Plant Anal., 1988, vol. 19, pp. 1179-1194.
132. Teylor G. J., Foy C. D. Mechanisms of aluminum tolerance in Triticum aestivum L. (wheat). 1. Differential pH induced by winter cultivars in nutrientsolutions // Am. J. Bot., 1985, vol. 72, pp. 695-701.
133. Trapp G. Studies of aluminum interaction with enzymes and proteins - The inhibition of hexokinase // Neurotoxicology., 1980, vol. 1, pp. 89-100.
134. Ulmer S. E. Aluminum toxicity and root DNA synthesis in wheat // Iowa State University, Ames., 1979, 128 p.
135. Wacker W. E., Valle B. H. Resistance to aluminium and manganese toxicities in plants related to variety and cation-exchange capacity // Nature, 1959, vol. 196, no. 48/49, pp. 97-98.
136. Wagatsuma T. Characterization of absorption sites for aluminium in theroots // Soil Sci. Plant Nutr., 1983, vol. 29, pp. 499-515.
137. Wagatsuma T., Yamasaku K. Relationship between differential aluminum tolerance and plant induced pH change of medium among barley cultivars // Soil Sci. Plant Nutr., 1985, vol. 31, pp. 521-535.
138. Wallace S H., Anderson I. C. Aluminium toxity and DNA sintesis in wheat roots // Agron. J., 1984, vol. 76, pp. 5-8.
139. Wang J. P., Raman H, Zhou M. X, Ryan P. R., Delhaize E., Hebb D. M, Coombes N., Mendham N. High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.) // Theor. Appl. Genet., 2007, vol. 115, no. 2, pp. 265-276. DOI: 10.1007/s00122-007-0562-9.
140. Woolhouse H. W. Toxicity and tolerance in response of plants to metals // In: Lange, O. L. et all. (Ed), Encyclopaedia of Plant Physiology. New Series. Springer-Verlag, Berlin, 1983, vol. 12C, pp. 245-300.
141. Xie C. X., Yokel R. A. Aluminium facilitation of iron-mediated lipid-peroxidation is dependent on substrate, pH and aluminium and iron concentrations // Arch. Biochem. Biophys., 1996, vol. 327, no. 2, pp. 222-226.
142. Yakovleva O. V., KapeshinskiyA. M. Tolerance of barley to toxic ions of aluminium in the conditions of soil culture // Bulletin applied botani, geneticsand plant breeding, 2011, vol. 168, pp. 54-64 [in Russian]
143. Yakovleva O. V. Methods of study on genetic diversity of barley aluminum tolerance // Bulletin applied botany, genetics and plant breeding, 2012, vol. 171, pp. 117-122 [in Russian]
144. Yamamoto Y., Kobayashi Y., Devi S. R., Rikiishi S., Matsumoto H. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells // Plant Physiol., 2002, vol. 128, pp. 63-72. DOI:10.1104/pp.010417.
145. Yang Z. M., Sivaguru M., Horst W. J., Matsumoto H. Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glicine max) // Physiol. Plant., 2000, vol. 110, pp. 72-77.
146. Yokosho K., Yamaji N., Ueno D., Mitani N., Ma J. F. OsFRDL 1 in a citrate transporter requried for efficient translocation of iron in rice // Plant. Physiol., 2009, vol. 149, no. 1, pp. 297-305. DOI: 10.1104/pp.108.128132.
147. Zale J. M., Briggs K. G. Aluminum tolerance in canadian spring wheats // Commun. Soil. Sci. and Plant Anal., 1988, vol. 19, no. 7, pp. 1259-1272.
148. Zanella C. C, Zanettini M. H. B., Fernandes M. I. B., Zinn D. M. Differential effect of soil acidity and lime treatment on the chromosomes of two wheat cultivars // Rev. Bras. Genet., 1991, vol. 14, no. 4, pp. 10211032.
149. ZhangH., JiangZ., QinR., ZhangH., Zou J., Jiang W. et all. Accumulation and cellular toxicity of aluminum in seedling of Pinus massoniana // BMC Plant Biol., 2014, vol. 14, pp. 264. DOI: 10.1186/s12870-014-0264-9.
150. Zhang J., Liu S., Zhang L., Chen L. Effect of aluminum stress on the expression of calmodulin and role of calmodulin in aluminum tolerance // Biosci. Bioeng., 2016, vol. 122, no. 5, pp. 558-562. DOI:10.1016/jjios.2016.04.001.
151. Zheng H. L., Zhao Z. Q., Zhang C. G., Feng J. Z., Ke Z. L., Su M. J. Changes in lipid peroxidation, the redox system and ATPase activities in plasma membranes of rice seedling roots caused by lanthaum chloride // Biometals., 2000, vol. 13, pp. 157-163.
Review
For citations:
Yakovleva O.V. Phytotoxicity of aluminum ions. Proceedings on applied botany, genetics and breeding. 2018;179(3):315-331. (In Russ.) https://doi.org/10.30901/2227-8834-2018-3-315-331