Interrelationships among morphological traits and seed yield in garden cress under two environmental circumstances
https://doi.org/10.30901/2227-8834-2025-3-127-139
Abstract
Background. This study aimed to explore the morphological traits associated with seed yield in garden cress and to recognize the direct and indirect effects of agronomic characteristics. Analyzing the relationships between traits and seed yield with understanding their causal effects helps breeders choose the best combination of yield components to improve economic performance.
Materials and methods. A total of 64 accessions, including 60 international and 4 local Iranian genotypes, were evaluated across two locations (Ardabil and Eyvanki) using a randomized block scheme.
Results. Biomass consistently emerged as the most influential trait across both environments, followed by leafand pod-related characters. Categorizing traits into primary, secondary, tertiary, and quaternary orders helped reduce multicollinearity and clarified the structure of trait interrelationships. Path analysis indicated several optimal selection pathways, such as LB → PP → PB → BIO → SY in Ardabil, and FLO → LW → LL → SY in Eyvanki. The bootstrapped estimates confirmed the stability and reliability of the identified trait effects.
Conclusion. Finally, indirect selection based on biomass, leaf traits, and yield components can improve seed yield in garden cress. Also, simultaneous improvement of seed and leaf yield is feasible and should be considered in future breeding programs.
About the Authors
N. SabaghniaIslamic Republic of Iran
Naser Sabaghnia - PhD, Professor.
Amirkabir Hwy., Maragheh 83111-55181
V. Rahimi
Islamic Republic of Iran
Vahid rahimi – PhD.
University St., Ardabil 56199-11367
M. Mohebodini
Russian Federation
Mehdi Mohebodini - PhD, Professor.
University St., Ardabil 56199-11367
M. Janmohammadi
Russian Federation
Mohsen Janmohammadi - PhD, Professor.
Amirkabir Hwy., Maragheh 83111-55181
References
1. Adak A., Murray S.C., Božinović S., Lindsey R., Nakasagga S., Chatterjee S. et al. Temporal vegetation indices and plant height from remotely sensed imagery can predict grain yield and flowering time breeding value in maize via machine learning regression. Remote Sensing. 2021;13(11):2141. DOI: 10.3390/rs13112141
2. Adera F., Yusuf Z., Desta M. Physicochemical properties and biological activities of garden cress (Lepidium sativum L.) seed and leaf oil extracts. Canadian Journal of Infec tious Diseases and Medical Microbiology. 2022;1:2947836. DOI: 10.1155/2022/2947836
3. Bedassa T., Andargie M., Eshete M. Genetic variability and association among yield, yield related traits and oil content in Ethiopian garden cress (Lepidium sativum L.) genotypes. Journal of Plant Breeding and Crop Science. 2013;7(5):141-149. DOI: 10.5897/JPBCS2013.0396
4. Chalise D.P., Snider J.L., Hand L.C., Roberts P., Vellidis G., Ermanis A. et al. Cultivar, irrigation management, and mepiquat chloride strategy: Effects on cotton growth, maturity, yield, and fiber quality. Field Crops Research. 2022;286:108633. DOI: 10.1016/j.fcr.2022.108633
5. Chaudhary S., Devi P., HanumanthaRao B., Jha U.C., Sharma K.D., Prasad P.V.V. et al. Physiological and molecular approaches for developing thermotolerance in vegetable crops: A growth, yield and sustenance perspective. Frontiers in Plant Science. 2022;13:878498. DOI: 10.3389/fpls.2022.878498
6. Cobb J.N., Juma R.U., Biswas P.S., Arbelaez J.D., Rutkoski J., Atlin G. et al. Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theoretical and Applied Genetics. 2019;132(3):627-645. DOI: 10.1007/s00122-019-03317-0
7. Demeke B., Dejene T., Abebe D. Genetic variability, heritability, and genetic advance of morphological, yield related and quality traits in upland rice (Oryza sativa L.) genotypes at pawe, northwestern Ethiopia. Cogent Food and Agriculture. 2023;9(1):2157099. DOI: 10.1080/23311932.2022.2157099
8. Dwivedi S.L., Spillane C., Lopez F., Ayele B.T., Ortiz R. First the seed: Genomic advances in seed science for improved crop productivity and food security. Crop Science. 2021;61(3):1501-1526. DOI: 10.1002/csc2.20402
9. Janmohammadi M., Sabaghnia N., Nouraein M. Path analysis of grain yield and yield components and some agronomic traits in bread wheat. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 2014;62(5):945-952. DOI: 10.11118/actaun201462050945
10. Kakaei M., Farshadfar M. Studies on genetic parameters, heritability, and path analysis under irrigated and rainfed conditions in chickpea. Plant Molecular Biology Reporter. 2025;1:1-12. DOI: 10.1007/s11105-025-01534-0
11. Mohammed S., Tiku K., Daniel F. A promising genotype of Lepidium sativum for enhanced yield and agronomic performances under optimal growth conditions. Horticulturae. 2025;11(2):153. DOI: 10.3390/horticulturae11020153
12. Mohebodini M., Sabaghnia N., Janmohammadi M. Interrelationships between seed yield and 16 related traits of 81 garden cress landraces. HortScience. 2018;53(7):946-948. DOI: 10.21273/HORTSCI12868-18
13. Nayebi-Aghbolag K., Sabaghnia N., Pasandi-Somehsofla M., Janmohammadi M. Study of correlation coefficients of agronomic traits and path analysis of seed yield in rye. Plant Productions. 2019;42(1):31-46. DOI: 10.22055/ppd.2019.22523.1486
14. Rahimi V., Mohebodini M., Ghanbari A., Behnamian M., Azizinia S. The relationship between morphological traits and seed yield of Iranian garden cress accession. Acta Scien tiarum Polonorum. Hortorum Cultus. 2019;18(3):137-145. DOI: 10.24326/asphc.2019.3.13
15. Sabaghnia N., Ahadnezhad A., Janmohammdi M. Genetic variation in garden cress (Lepidium sativum L.) germplasm as assessed by some morphological traits. Genetic Resources and Crop Evolution. 2015;62(5):733-745. DOI: 10.1007/s10722-014-0192-4
16. Sabaghnia N., Janmohammadi M. Path analysis of morphological traits influencing performance in Cicer arietinum genotypes under semi-arid conditions. Acta Biologica Szegedi ensis. 2024;68(1):1-8. DOI: 10.14232/abs.2024.1.1-8
17. Sabaghnia N., Mohebodini M., Janmohammadi M. Biplot analysis of trait relations of spinach (Spinacia oleracea L.) landraces. Genetika. 2016;48(2):675-690. DOI: 10.2298/GENSR1602675S
18. Saroj R., Soumya S.L., Singh S., Sankar S.M., Chaudhary R., Yashpal et al. Unraveling the relationship between seed yield and yield-related traits in a diversity panel of Brassica jun cea using multi-traits mixed model. Frontiers in Plant Sci ence. 2021;12:651936. DOI: 10.3389/fpls.2021.651936
19. Tadesse L., Mekbib F., Wakjira A., Tadele Z. Correlation and path coefficient analysis of yield and quality components of garden cress (Lepidium sativum L.) genotypes in Ethiopia. Journal of Plant Breeding and Crop Science. 2018;10(10):290-297. DOI: 10.5897/JPBCS2018.0757
20. Tao Y., Li Z., Shah F., Wu W. Optimizing biomass allocation for optimum balance of seed yield and lodging resistance in rapeseed. Field Crops Research. 2024;316:109493. DOI: 10.1016/j.fcr.2024.109493
21. Wang H., Cai X., Umer M.J., Xu Y., Hou Y., Zheng J. et al. Genetic analysis of cotton fiber traits in Gossypium hybrid lines. Physiologia Plantarum. 2024;176(4):e14442. DOI: 10.1111/ppl.14442
22. Yoo E., Kim E.G., Lee J.E., Lee S., Lee D., Lee G.A. Genetic variations in FAD3 and its influence on agronomic traits and fatty acid composition in perilla germplasm. Plant Science. 2025;355:112452. DOI: 10.1016/j.plantsci.2025.112452
23. Zavoshti S., Sabaghnia N., Moayed F. Correlation and path coefficient analyses of dry weight yield components in the common sainfoin (Onobrychis viciifolia Scop.). Jour nal of Agricultural Science (Belgrade). 2023;68(2):155-169. DOI: 10.2298/JAS2302155Z
Review
For citations:
Sabaghnia N., Rahimi V., Mohebodini M., Janmohammadi M. Interrelationships among morphological traits and seed yield in garden cress under two environmental circumstances. Proceedings on applied botany, genetics and breeding. 2025;186(3):127-139. https://doi.org/10.30901/2227-8834-2025-3-127-139