The effect of in vitro inoculation of strawberry microplants with rhizobacteria strains on their stress response during ex vitro cultivation under hydroponic conditions
https://doi.org/10.30901/2227-8834-2025-3-80-91
Abstract
Background. Preliminary inoculation of microplants in vitro with growth-promoting rhizobacteria can positively affect their adaptation to ex vitro conditions. The aim of the work was to study the effect of inoculation of strawberry microclones in in vitro culture with Azospirillum baldaniorum Sp245 and Kocuria rosea T1Ks19 on the stress response during ex vitro cultivation under hydroponic conditions.
Materials and methods. Strawberry microplants of cvs. ‘Asia’ and ‘Vima Kimberly’ were used as macrosymbionts. The rhizobacteria from the collection of rhizosphere microorganisms of the Institute of Biochemistry and Physiology of Plants and Microorganisms (Saratov) served as microsymbionts. Co-inoculation with bacteria was carried out in vitro (106 CFU/mL), then 45-day-old plants were planted in a hydroponic setup (ex vitro). The morphometric and biochemical parameters of plants and the number of bacteria on the root surface were analyzed dynamically.
Results. In vitro inoculation of strawberry microplants with rhizobacteria strains did not lead to contamination of the nutrient medium. Both strains were detected on the roots throughout the adaptation period. Bacterization of microplants resulted in a decrease in the root length in both cultivars and the number of leaves in ‘Vima Kimberly’ after 20 days of adaptation, but without changing the shoot biomass. During the adaptation process, the bacterized plants, unlike the controls, maintained a stable level of photosynthetic pigments better. By the 20th day, the amount of pigments in bacterized plants was significantly higher than in the control variants. A cultivar-specific reaction of the activity of antioxidant enzymes (peroxidase, catalase, and ascorbate peroxidase) and malondialdehyde was noted.
Conclusion. It was found that in vitro inoculation of strawberry microplants with rhizobacteria resulted in a decrease in the stress response in plants of cvs. ‘Asia’ and ‘Vima Kimberly’ at the ex vitro cultivation stage.
Keywords
About the Authors
A. A. KulikovRussian Federation
Artem A. Kulikov, Postgraduate Student
4, bldg 3, Petra Stolypina Ave., Saratov 41001
O. V. Tkachenko
Russian Federation
Oksana V. Tkachenko, Cand. Sci. (Agriculture), Head of a Department
4, bldg 3, Petra Stolypina Ave., Saratov 410012
N. V. Evseeva
Russian Federation
Nina V. Evseeva, Cand. Sci. (Biology), Senior Researcher
13 Entuziastov Ave., Saratov 410049
К. Каргаполова
Russian Federation
Kristina Yu. Kargapolova, Cand. Sci. (Agriculture), Associate Professor
4, bldg 3, Petra Stolypina Ave., Saratov 410012
A. Yu. Denisova
Russian Federation
Alena Yu. Denisova, Assistant Professor
4, bldg 3, Petra Stolypina Ave., Saratov 410012
N. N. Pozdnyakova
Russian Federation
Natalia N. Pozdnyakova, Dr. Sci. (Biology), Leading Researcher
13 Entuziastov Ave., Saratov 410049
G. L. Burygin
Russian Federation
Gennady L. Burygin, Cand. Sci. (Biology), Senior Researcher, Saratov Scientific Centre of the Russian Academy of Sciences, Institute of Biochemistry and Physiology of Plants and Microorganisms – a separate structural subdivision of Saratov Scientific Centre of the Russian Academy of Sciences; Associate Professor, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov
13 Entuziastov Ave., Saratov 410049
4, bldg 3, Petra Stolypina Ave., Saratov 410012
A. A. Shirokov
Russian Federation
Alexander A. Shirokov, Cand. Sci. (Biology), Head of the Center for Collective Use
13 Entuziastov Ave., Saratov 410049
References
1. Arkhipova T.N., Evseeva N.V., Tkachenko O.V., Burygin G.L., Vysotskaya L.B., Akhtyamova Z.A. et al. Rhizobacteria inoculation effects on phytohormone status of potato microclones cultivated in vitro under osmotic stress. Biomolecules. 2020;10(9):1231. DOI: 10.3390/biom10091231
2. Burygin G.L., Kargapolova K.Yu., Kryuchkova Ye.V., Avdeeva E.S., Gogoleva N.E., Ponomaryova T.S. et al. Ochrobactrum cytisi IPA7.2 promotes growth of potato microplants and is resistant to abiotic stress. World Journal of Microbiology and Biotechnology. 2019;35(4):55. DOI: 10.1007/s11274-019-2633-x
3. Cantabella D, Dolcet-Sanjuan R, Teixidó N. Using plant growth-promoting microorganisms (PGPMs) to improve plant development under in vitro culture conditions. Planta. 2022;255(6):117. DOI: 10.1007/s00425-022-03897-0
4. Choi H.G. Correlation among phenotypic parameters related to the growth and photosynthesis of strawberry (Fragaria × ananassa Duch.) grown under various light intensity conditions. Frontiers in Plant Science. 2021;12:647585. DOI: 10.3389/fpls.2021.647585
5. De Moura G., de Barros A., Machado F., da Silva C., Glienke C., Petters-Vandresen D.A.L. et al. The friend within: endophytic bacteria as a tool for sustainability in strawberry crops. Microorganisms. 2022;10(12):2341. DOI: 10.3390/microorganisms10122341
6. Dias A.C.F., Costa F.E.C., Andreote F.D., Lacava P.T., Teixeira M.A., Assumpção L.C., Araújo W.L., Azevedo J.L., Melo I.S. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World Journal of Microbiology and Biotechnology. 2009;25(2):189-195. DOI: 10.1007/s11274-008-9878-0
7. Guerrero-Molina M.F., Lovaisa N.C., Salazar S.M., Díaz-Ricci J.C., Pedraza R.O. Elemental composition of strawberry plants inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, assessed with scanning electron microscopy and energy dispersive X-ray analysis. Plant Biology (Stuttgart). 2014;16(4):726-731. DOI: 10.1111/plb.12114
8. Hazarika B.N., Teixeira da Silva J.A., Talukdar A. Effective acclimatization of in vitro cultured plants: Methods, physiology and genetics. In: J.A. Teixeira da Silva (ed.). Floriculture, Ornamental and Plant Biotechnology. Vol. 2. Bexhill-On-Sea: Global Science Books; 2006. p.427-438.
9. IBPPM RAS Collection of Rhizosphere Microorganisms: [website]. Available from: http://collection.ibppm.ru [accessed Aug. 17, 2024].
10. Kargapolova K.Yu., Burygin G.L., Tkachenko O.V., Evseeva N.V., Pukhalskiy Ya.V., Belimov A.A. Effectiveness of inoculation of in vitro-grown potato microplants with rhizosphere bacteria of the genus Azospirillum. Plant Cell, Tissue and Organ Culture. 2020;141(2):351-359. DOI: 10.1007/s11240-020-01791-9
11. Kha T.Z., Kanarskii A.V., Kanarskaia Z.A., Shcherbakov A.V., Shcherbakova E.N. The key plant growth stimulator – rhizobacteria. Vestnik of Volga State University of Technology. Series: Forest. Ecology. Nature management. 2020;3(47):58-73. [in Russian] DOI: 10.25686/2306-2827.2020.3.58
12. Liu S., Strauss S., Adibi M., Mosca G., Yoshida S., Dello Ioio R. et al. Cytokinin promotes growth cessation in the Arabidopsis root. Current Biology. 2022;32(9):1974-1985.e3. DOI: 10.1016/j.cub.2022.03.019
13. Madhavi B.G.K., Kim N.E., Basak J., Choi G.M., Kim H.T. Comparative study of strawberry growth and fruit quality parameters in horizontal and vertical production systems. Horticulture, Environment, and Biotechnology. 2023;64(2):409-419. DOI: 10.1007/s13580-022-00494-8
14. Matora L.Yu., Shvartsburd B.I., Shchegolev S.Yu. Immunochemical analysis of O-specific polysaccharides from the soil nitrogen-fixing bacterium Azospirillum brasilense. Microbiology (Moscow). 1998;67(6):677-681.
15. Mynett K., Podwyszyńska M., Derkowska E., Górnik K., Sas-Paszt L., Wojtania A. Effect of biologically active TotalHumus® and Bacterbase on the growth ex vitro of strawberry, blueberry and hip rose microcuttings. Acta Scientiarum Polonorum, Hortorum Cultus. 2022;21(6):7-20. DOI: 10.24326/asphc.2022.6.1
16. Naing A.H., Kim S.H., Chung M.Y., Park S.K., Kim C.K. In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars. Plant Methods. 2019;15:36. DOI: 10.1186/s13007-019-0421-0
17. Orlikowska T., Nowak K., Reed B.M. Bacteria in the plant tissue culture environment. Plant Cell Tissue and Organ Culture. 2017;128(3):487-508. DOI: 10.1007/s11240-016-1144-9
18. Paliwoda D., Mikiciuk G., Mikiciuk M., Kisiel A., Sas-Paszt L., Miller T. Effects of rhizosphere bacteria on strawberry plants (Fragaria × ananassa Duch.) under water deficit. International Journal of Molecular Sciences. 2022;23(18):10449. DOI: 10.3390/ijms231810449
19. Papadopoulou A., Matsi T., Kamou N., Avdouli D., Mellidou I., Karamanoli K. Decoding the potential of a new Pseudomonas putida strain for inducing drought tolerance of tomato (Solanum lycopersicum) plants through seed biopriming. Journal of Plant Physiology. 2022;271:153658. DOI: 10.1016/j.jplph.2022.153658
20. Sokolova E.A., Mishukova O.V., Hlistun I.V., Tromenschleger I.N., Tikunov A.Y., Manakhov A.D. et al. The effectiveness of co-inoculation by consortia of microorganisms depends on the type of plant and the soil microbiome. Plants (Basel). 2023;13(1):116. DOI: 10.3390/plants13010116
21. Soumare A., Diédhiou A.G., Arora N.K., Al-Ani L.K.T., Ngom M., Fall S. et al. Potential role and utilization of plant growth promoting microbes in plant tissue culture. Frontiers in Microbiology. 2021;12:649878. DOI: 10.3389/fmicb.2021.649878
22. State Variety Commission. Catalogue of Breeding Achievements: [website]. [in Russian] https://gossortrf.ru/registry/ [дата обращения: 10.02.2025].
23. Stepanov V.V., Moskovenko N.V. Study of the indicators of the quality of the landscape of gardening drinked by microcloton biotechnology. Scientific Works of the Kuban State Technological University. 2016;(14):621-628. [in Russian] URL: https://ntk.kubstu.ru/data/mc/0035/1487.pdf [дата обращения: 03.02.2025]
24. Tkachenko O.V., Evseeva N.V., Kargapolova K.Yu., Denisova A. Yu., Burygin G.L., Pozdnyakova N.N. et al. Application of rhizobacteria Azospirillum baldaniorum Sp245 and Kocuria rosea T1Ks19 to increase the efficiency of potato cultivation in aeroponics. Russian Journal of Plant Physiology. 2023a;70(8):190. DOI: 10.1134/S1021443723602276
25. Tkachenko O.V., Evseeva N.V., Kargapolova K.Yu., Denisova A. Yu., Pozdnyakova N.N., Kulikov A.A. et al. Increased activity of the pro/antioxidant system of potato microplants by rhizospheric bacteria in aeroponics conditions. The Agrarian Scientific Journal. 2023b;(3):65-72. [in Russian] DOI: 10.28983/asj.y2023i3pp65-72
26. Tkachenko O.V., Evseeva N.V., Terentyeva E.V., Burygin G.L., Shirokov A., Burov A.М. et al. Improved production of high-quality potato seeds in aeroponics with plant-growth-promoting rhizobacteria. European Potato Journal. 2021;64(1):55-66. DOI: 10.1007/s11540-020-09464-y
27. Vicente-Hernández A., Salgado-Garciglia R., Valencia-Cantero E., Ramírez-Ordorica A., Hernández-García A., García-Juárez P. et al. Bacillus methylotrophicus M4-96 stimulates the growth of strawberry (Fragaria × ananassa ‘Aromas’) plants in vitro and slows Botrytis cinerea infection by two different methods of interaction. Journal of Plant Growth Regulation. 2019;38(3):765-777. DOI: 10.1007/s00344-018-9888-6
28. Wang K., He W., Ai Y., Hu J., Xie K., Tang M. et al. Optimizing seed potato production by aeroponics in China. Philippine Journal of Crop Science. 2017;42(1):69-74.
29. Wellburn A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology. 1994;144(3):307-313. DOI: 10.1016/S0176-1617(11)81192-2
Review
For citations:
Kulikov A.A., Tkachenko O.V., Evseeva N.V., , Denisova A.Yu., Pozdnyakova N.N., Burygin G.L., Shirokov A.A. The effect of in vitro inoculation of strawberry microplants with rhizobacteria strains on their stress response during ex vitro cultivation under hydroponic conditions. Proceedings on applied botany, genetics and breeding. 2025;186(3):80-91. (In Russ.) https://doi.org/10.30901/2227-8834-2025-3-80-91