Study and in vitro preservation of the rare endangered species Prunus armeniaca L. in Kazakhstan
https://doi.org/10.30901/2227-8834-2025-3-9-22
Abstract
Background. The decline of plants in natural populations leads to biodiversity loss and ecosystem disruption. Comprehensive study and restoration of degrading populations, particularly of rare species, is highly relevant. Plant tissue culture biotechnology is an important tool for conserving genetic diversity.
Materials and methods. A total of 115 accessions of Prunus armeniaca L. from two populations in Almaty Region were collected and studied employing geobotanical and tissue culture techniques.
Results. Descriptor-based evaluation (46 parameters) was conducted, herbarium specimens were prepared, remote sensing was performed, a digital elevation model (DEM) and orthophotomap were created, and NDVI values (0.3–0.7) were calculated. For in vitro initiation of embryonic axes, Knop’s medium proved optimal, with 94.5% viability. Medium 523 showed a low contamination rate (1.1%). The highest multiplication rate (MR) of 2.9 was achieved on the MS5 medium supplemented with 1 mg L–1 of 6-benzylaminopurine (BAP) and 0.3 mg L–1 of gibberellic acid (GA).
Conclusion. The actual condition of the populations was determined: high incidence of damage (up to 52.6%) and absence of fruiting in certain areas. Cartographic maps of the territory were made. The effectiveness of Knop’s medium for in vitro germination of embryonic axes was confirmed, and testing of in vitro shoots on medium 523 showed a low contamination level (1.1%). The highest MR (2.9) was obtained on the MS5 medium with elevated concentrations of BAP and GA.
About the Authors
N. A. AltayevaKazakhstan
Nazira A. Altayeva, Senior Researcher
45 Timiryazev St., Almaty 050040
A. S. Zemtsova
Kazakhstan
Alina S. Zemtsova, Associate Researcher
45 Timiryazev St., Almaty 050040
N. A. Artimovich
Kazakhstan
Natalya A. Artimovich, Laboratory Assistant
45 Timiryazev St., Almaty 050040
A. B. Tolegen
Kazakhstan
Arman B. Tolegen, Senior Researcher, Institute of Plant Biology and Biotechnology; PhD Student, al-Farabi Kazakh National University
45 Timiryazev St., Almaty 050040
71 al-Farabi Ave., Almaty 050040
S. V. Kushnarenko
Kazakhstan
Svetlana V. Kushnarenko, Cand. Sci. (Biology), Professor, Head of a Laboratory
45 Timiryazev St., Almaty 050040
N. V. Romadanova
Kazakhstan
Natalya V. Romadanova, Cand. Sci. (Biology), Associate Professor, Leading Researcher
45 Timiryazev St., Almaty 050040
References
1. Abdalla N., El-Ramady H., Seliem M.K., El-Mahrouk M.E., Taha N., Bayoumi Y. et al. An academic and technical overview on plant micropropagation challenges. Horticulturae. 2022;8(8):677. DOI: 10.3390/horticulturae8080677
2. Alzubi H., Yepes L.M., Fuchs M. In vitro storage of micropropagated grapevine rootstocks at low temperature. In Vitro Cellular and Developmental Biology – Plant. 2019;55(3):334-341. DOI: 10.1007/s11627-019-09980-8
3. Balenović I., Marjanović H., Vuletić D., Paladinić E., Ostrogović Sever M.Z., Indir K. Quality assessment of high-density digital surface model over different land cover classes. Periodicum Biologorum. 2015a;117(4):459-470. DOI: 10.18054/pb.2015.117.4.3452
4. Balenović I., Seletković A., Pernar R., Jazbec A. Estimation of the mean tree height of forest stands by photogrammetric measurement using digital aerial images of high spatial resolution. Annals of Forest Research. 2015b;58(1):125-143. DOI: 10.15287/afr.2015.300
5. Balla I., Vértesy J. In vitro culture of Hungarian apricot (Prunus armeniaca L.) varieties. Acta Horticulturae. 2000;560:395-398. DOI: 10.17660/ActaHortic.2001.560.75
6. Chaudhury R., Malik S.K. Cryopreservation of plant species: Practical approaches from handling to cryobanking. New Delhi: ICAR – NBPGR; 2017. Available from: http://www.nbpgr.ernet.in:8080/cryobank/img/books/Cryo_Preservation_of_Plant_Species.pdf [accessed Jan. 21, 2025].
7. Coelho N., Gonçalves S., Romano A. Endemic plant species conservation: Biotechnological approaches. Plants. 2020;9(3):345. DOI: 10.3390/plants9030345
8. Dunaeva S.E., Antonova O.Y., Pendinen G.I., Shvachko N.A., Gavrilenko T.A. Maintenance of genetic diversity of vegetatively propagated plant crops under controlled environment at the VIR. Proceedings on Applied Botany, Genetics and Breeding. 2012;169:245-256. [in Russian]
9. Dzhangaliev A.D., Salova T.N., Turekhanova P.M. The wild fruit and nut plants of Kazakhstan. In: J. Janick (ed.). Horticultural Reviews. Vol. 29. Wild Apple and Fruit Trees of Central Asia. Hoboken, NJ: John Wiley & Sons, Inc.; 2003. p.305-371. DOI: 10.1002/9780470650868.ch3
10. Dzhangaliev A.D., Salova T.N., Turekhanova R.M. Wild fruit plants of Kazakhstan. Almaty; 2001. [in Russian]
11. Engelmann F. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cellular and Developmental Biology – Plant. 2011;47(1):5-16. DOI: 10.1007/s11627-010-9327-2
12. FAOSTAT. Food and Agriculture Organization of the United Nations. Food and agriculture data: [website]. Available from: https://www.fao.org/faostat/en/#data/QCL [accessed Jan. 21, 2025].
13. Gavrilenko T.A., Dunayeva S.E., Truskinov E.V., Antonova O.Y., Pendinen G.I., Lupysheva J.V. et al. A strategy of long-term conservation of vegetatively propagated crops under controlled conditions. Proceedings on Applied Botany, Genetics and Breeding. 2007;164:273-285. [in Russian]
14. GISGeography. What is NDVI (Normalized Difference Vegetation Index): [website]. Available from: https://gisgeography.com/ndvi-normalized-difference-vegetation-index [accessed Oct. 11, 2024].
15. Golubev A.M. Clonal micropropagation of some apricot genotypes in the culture of apical meristems and leaf cuttings. Works of the State Nikita Botanical Gardens. 2017;144(2):64-69. [in Russian]
16. Groppi A., Liu S., Cornille A., Decroocq S., Bui Q.T., Tricon D. et al. Population genomics of apricots unravels domestication history and adaptive events. Nature Communications. 2021;12(1):3956. DOI: 10.1038/s41467-021-24283-6
17. İpek M., Arıkan Ş., Eşitken A., Aras S. Effect of different hormones concentration on in vitro regeneration of apricot cultivars. Turkish Journal of Agriculture – Food Science and Technology. 2023;11(8):1372-1379. DOI: 10.24925/turjaf.v11i8.1372-1379.6194
18. Jenderek M.M., Reed B.M. Cryopreserved storage of clonal germplasm in the USDA National Plant Germplasm System. In Vitro Cellular and Developmental Biology – Plant. 2017;53(4):299-308. DOI: 10.1007/s11627-017-9828-3
19. Jiang F., Zhang J., Wang S., Yang L., Luo Y., Gao S. et al. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Horticulture Research. 2019;6(1):128. DOI: 10.1038/s41438-019-0215-6
20. Khafri A.Z., Solouki M., Zarghami R., Fakheri B.A., Mahdinezhad N., Naderpour M. In vitro propagation of three Iranian apricot cultivars. In Vitro Cellular and Developmental Biology – Plant. 2020;57(1):1-16. DOI: 10.1007/s11627-020-10112-w
21. Knop W. Quantitative Utersuchungen Über den ErnährungensprozeB der Pflanze. Landwirtschaftliche Versuchsstation. 1865;7:93. [in German]
22. Kokoreva I.I., Otradnykh I.G., Syedyna I.A., Lysenko V.V. Rare plant species of the Northern Tien Shan. Almaty; 2013. [in Russian]
23. Kovalchuk I., Turdiyev T., Mukhitdinova Z., Frolov S., Reed B.M. Cryopreservation of native Kazakhstan apricot (Prunus armeniaca L.) seeds and embryonic axes. CryoLetters. 2014;35(2):83-89.
24. Kovalchuk I.Y., Mukhitdinova Z.R., Turdiyev T.T., Madiyeva G.A., Reed B.M. Optimization of in vitro growth medium for a wild Kazakhstan apricot, Prunus armeniaca. Acta Horticulturae. 2017:1155:193-199. DOI: 10.17660/ActaHortic.2017.1155.27
25. Kushnarenko S.V., Romadanova N.V., Aralbayeva M.M. Current state and in vitro conservation of the only endangered population of Corylus avellana in Kazakhstan. Research on Crops. 2020;21(4):681-686. DOI: 10.31830/2348-7542.2020.106
26. Kushnarenko S.V., Rymkhanova N.K, Aralbayeva M.M., Romadanova N.V. In vitro cold acclimation is required for successful cryopreservation of Juglans regia L. shoot tips. CryoLetters. 2023;44(4):240-248. DOI: 10.54680/fr23410110612
27. Lalso V., Onet A., Vicas S., Agud E., Onet C. In vitro propagation of apricot (Prunus armeniaca L.). Annals of the University of Oradea, Fascicle: Environmental Protection. 2018:30:197-202. Available from: https://protmed.uoradea.ro/facultate/publicatii/protectia_mediului/2018A/im/05.%20Laslo%20Vasile.pdf [accessed Jan. 21, 2025].
28. Lateur M., Dapena E., Szalatnay D., Gantar M.E., Guyader A., Hjalmarsson I., Höfer M., Ikase L., Kellerhals M., Lacis G., Militaru M., Miranda Jiménez C., Osterc G., Rondia A., Volens K., Zeljković M.K., Ordidge M. ECPGR characterization and evaluation descriptors for apple genetic resources. Apple (Malus × domestica). Rome: ECPGR; 2022. Available from: https://www.ecpgr.org/fileadmin/bioversity/publications/pdfs/2022_ECPGR_Malus_descriptors_final.pdf [accessed Jan. 21, 2025].
29. Mitrofanova I.V., Mitrofanova O.V., Lesnikova-Sedoshenko N.P., Chelombit S.V., Gorina V.M., Chirkov S.N. Some features of obtaining new breeding forms of apricot in vitro. Acta Horticulturae. 2020;1290:237-242. DOI: 10.17660/ActaHortic.2020.1290.42
30. Mukanova G.S., Smailova M.K., Sankaibaeva A.G., Shadmanova L.Sh. Analysis of phenological, pomological and biochemical characteristics of wild apricot in Kazakhstan. Acta Horticulturae. 2024;1387:217-224. DOI: 10.17660/ActaHortic.2024.1387.29
31. Murashige T., Skoog F.A. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 1962;15(3):473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x
32. Ostrikova O.V., Fedotova I.E., Kharkhardina E.L. Studing of the nutrient medium hormonal composition influence on the morphogenesis of apricot embryos in vitro culture. Breeding and Variety Cultivation of Fruit and Berry Crops. 2018;5(1):93-96. [in Russian]
33. Pérez-Tornero O., Burgos L. Apricot micropropagation. In: S.M. Jain, H. Häggman (eds). Protocols for Micropropagation of Woody Trees and Fruits. Dordrecht: Springer; 2006. p.267-278. DOI: 10.1007/978-1-4020-6352-7_25
34. Red Data Book of Kazakhstan. Vol. 2. Plants. 2nd ed. Astana: ArtPrintXXI; 2014. [in Russian]
35. Romadanova N., Kushnarenko S., Karasholakova L. Development of a common PVS2 vitrification method for cryopreservation of several fruit and vegetable crops. In Vitro Cellular and Developmental Biology – Plant. 2017;53(4):382-393. DOI: 10.1007/s11627-017-9849-y
36. Romadanova N.V., Aralbayeva M.M., Zemtsova A.S., Alexandrova A.M., Kazybayeva S.Zh., Mikhailenko N.V. et al. In vitro collection for the safe storage of grapevine hybrids and identification of the presence of Plasmopora viticola resistance genes. Plants. 2024;13(8):1089. DOI: 10.3390/plants13081089
37. Romadanova N.V., Kushnarenko S.V. Conservation of plant biodiversity by biotechnology methods. Proceedings on Applied Botany, Genetics and Breeding. 2023;184(1):239-248. [in Russian] DOI: 10.30901/2227-8834-2023-1-239-248
38. Romadanova N.V., Mishustina S.A., Matakova G.N., Kushnarenko S.V., Rakhimbaev I.R., Reed B.M. In vitro collection of Malus shoot cultures for cryogenic bank development in Kazakhstan. Acta Horticulturae. 2016;1113:271-277. DOI: 10.17660/ActaHortic.2016.1113.40
39. Romadanova N.V., Tolegen A.B., Kushnarenko S.V., Zholdybayeva E.V., Bettoni J.C. Effect of Plant Preservative MixtureTM on endophytic bacteria eradication from in vitro grown apple shoots. Plants (Basel). 2022;11(19):2624. DOI: 10.3390/plants11192624
40. Rotach P. EUFORGEN Technical Guidelines for genetic conservation and use for service tree (Sorbus domestica). Rome: IPGRI; 2003. Available from: https://www.euforgen.org/fileadmin/templates/euforgen.org/upload/Publications/Technical_guidelines/Technical_guidelines_Sorbus_domestica.pdf [accessed Jan. 21, 2025].
41. Šiško M., Ternjak T., Grobelnik-Mlakar S. The effects of different cytokinin types and their concentration on in vitro growth of apricot (Prunus armeniaca L.) shoots. Agricultura. 2022;19(1):1-6. DOI: 10.18690/agricultura.19.1.1-6.2022
42. Soliman H.I.A. In vitro propagation of apricot (Prunus armeniaca L.) and assessment of genetic stability of micropropagated plants using RAPD analysis. World Applied Sciences Journal. 2012;19(5):1818-4952. DOI: 10.5829/idosi.wasj.2012.19.05.2770
43. SYSTAT 13.0.5: [website]. Available from: https://systat.informer.com/13.0 [accessed Jan. 21, 2025].
44. Trigiano R.N., Gray D.J. (eds). Plant tissue culture, development, and biotechnology. Boca Raton, FL: CRC Press; 2011. DOI: 10.1201/9781439896143
45. Viss P.R., Brooks E.M., Driver J.A. A simplified method for the control of bacterial contamination in woody plant tissue culture. In Vitro Cellular and Developmental Biology – Plant. 1991;27(1):42. DOI: 10.1007/BF02632060
46. Weier J., Herring D. Measuring vegetation (NDVI & EVI). NASA Earth Observatory; 2000. Available from: https://earthobservatory.nasa.gov/features/MeasuringVegetation [accessed Oct. 10, 2024].
47. Zaurov D.E., Molnar T., Eisenman S.W., Ford T.M., Mavlyanova R.F., Capik J.M. et al. Genetic resources of apricots (Prunus armeniaca L.) in Central Asia. HortScience. 2013;48(6):681-691. DOI: 10.21273/HORTSCI.48.6.681
Review
For citations:
Altayeva N.A., Zemtsova A.S., Artimovich N.A., Tolegen A.B., Kushnarenko S.V., Romadanova N.V. Study and in vitro preservation of the rare endangered species Prunus armeniaca L. in Kazakhstan. Proceedings on applied botany, genetics and breeding. 2025;186(3):9-22. (In Russ.) https://doi.org/10.30901/2227-8834-2025-3-9-22