Preview

Труды по прикладной ботанике, генетике и селекции

Расширенный поиск

Актуальные методы идентификации гибридов растений на примере ежевики

https://doi.org/10.30901/2227-8834-2025-1-224-241

Аннотация

В статье приведен обзор последних достижений в области идентификации гибридов ежевики, включая успешные примеры использования молекулярных маркеров и ДНК-штрихкодирования для классификации сложных гибридных форм. Особое внимание уделено анализу эффективности методов в зависимости от целей исследования и доступности ресурсов.

Обзор показывает, что в будущем потребуется стандартизация методик и расширение баз данных генетических маркеров для повышения точности классификации гибридов ежевики.

 

Об авторах

И. Ю. Журавлев
Научно-технологический университет «Сириус», Центр генетики и наук о жизни
Россия

Игорь Юрьевич Журавлев, младший научный сотрудник

354340, Краснодарский край, федеральная территория «Сириус», пгт. Сириус, Олимпийский пр., 1



М. Т. Меньков
Научно-технологический университет «Сириус», Центр генетики и наук о жизни
Россия

Михаил Тимофеевич Меньков, младший научный сотрудник

354340, Краснодарский край, федеральная территория «Сириус», пгт. Сириус, Олимпийский пр., 1



Е. Н. Маркова
Научно-технологический университет «Сириус», Центр генетики и наук о жизни; Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова
Россия

Елена Николаева Маркова, младший научный сотрудник

354340, Краснодарский край, федеральная территория «Сириус», пгт. Сириус, Олимпийский пр., 1; 
190000, Санкт-Петербург, ул. Б. Морская, 42, 44



Н. А. Добаркина
Научно-технологический университет «Сириус», Центр генетики и наук о жизни; Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова
Россия

Надежда Александровна Добаркина, лаборант-исследователь

354340, Краснодарский край, федеральная территория «Сириус», пгт. Сириус, Олимпийский пр., 1; 
190000, Санкт-Петербург, ул. Б. Морская, 42, 44



А. Я. Евлаш
Научно-технологический университет «Сириус», Центр генетики и наук о жизни
Россия

Анастасия Ярославовна Евлаш, младший научный сотрудник

354340, Краснодарский край, федеральная территория «Сириус», пгт. Сириус, Олимпийский пр., 1



Л. Ю. Шипилина
Научно-технологический университет «Сириус», Центр генетики и наук о жизни; Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова
Россия

Лилия Юрьевна Шипилина, кандидат биологических наук, старший научный сотрудник

354340, Краснодарский край, федеральная территория «Сириус», пгт. Сириус, Олимпийский пр., 1; 
190000, Санкт-Петербург, ул. Б. Морская, 42, 44



А. С. Розанов
Научно-технологический университет «Сириус», Центр генетики и наук о жизни
Россия

Алексей Сергеевич Розанов, кандидат биологических наук, ведущий научный сотрудник

354340, Краснодарский край, федеральная территория «Сириус», пгт. Сириус, Олимпийский пр., 1



Список литературы

1. Adams K.L., Wendel J.F. Polyploidy and genome evolution in plants. Current Opinion in Plant Biology. 2005;8(2):135-141. DOI: 10.1016/j.pbi.2005.01.001

2. Althoff D.M., Gitzendanner M.A., Segraves K.A. The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Systematic Biology. 2007;56(3):477-484. DOI: 10.1080/10635150701427077

3. Atienzar F.A., Jha A.N. The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutation Research. 2006;613(2-3):76-102. DOI: 10.1016/j.mrrev.2006.06.001

4. Batley J., Edwards D. SNP applications in plants. In: N.C. Oraguzie, E.H.A. Rikkerink, S.E. Gardiner, H.N. De Silva (eds). Association Mapping in Plants. New York, NY: Springer; 2007. p.95-102. DOI: 10.1007/978-0-387-360119_6

5. Boecklen W.J. Topology of syngameons. Ecology and Evolution. 2017;7(24):10486-10491. DOI: 10.1002/ece3.3507

6. BOLDSYSTEMS. BOLDv5: Identifying species through DNA barcodes: [website]. Available from: https://boldsystems.org/[accessed Sept. 24, 2024].

7. Brůna T., Aryal R., Dudchenko O., Sargent D.J., Mead D., Buti M., et al. A chromosome-length genome assembly and annotation of blackberry (Rubus argutus, cv. “Hillquist”). G3 (Bethesda). 2023;13(2):jkac289. DOI: 10.1093/g3journal/jkac289

8. Buerkle C.A., Gompert Z. Population genomics based on low coverage sequencing: how low should we go? Molecular Ecology. 2013;22(11):3028-3035. DOI: 10.1111/mec.12105

9. Cekic C., Calis O., Ozturk E.S. Genetic diversity of wild raspberry genotypes (Rubus idaeus L.) in North Anatolia based on ISSR markers. Applied Ecology and Environmental Research. 2018;16(5):6835-6843. DOI: 10.15666/aeer/1605_68356843

10. Chadha S., Gopalakrishna T. Retrotransposon-microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the rice blast pathogen (Magnaporthe grisea). Genome. 2005;48(5):943-945. DOI: 10.1139/g05-045

11. Davik J., Røen D., Lysøe E., Buti M., Rossman S., Alsheikh M., et al. A chromosome-level genome sequence assembly of the red raspberry (Rubus idaeus L.). PLoS One. 2022;17(3):e0265096. DOI: 10.1371/journal.pone.0265096

12. De Boer H.J., Ichim M.C., Newmaster S.G. DNA barcoding and pharmacovigilance of herbal medicines. Drug Safety. 2015;38(7):611-620. DOI: 10.1007/s40264-015-0306-8

13. De Vere N., Rich T.C.G., Trinder S.A., Long C. DNA barcoding for plants. In: J. Batley (ed.). Plant Genotyping. Methods in Molecular Biology. Vol. 1235. New York, NY: Humana Press; 2015. p.101-118. DOI: 10.1007/978-1-4939-1966-6_8

14. Dou Z., Chen C., Fu X. Digestive property and bioactivity of blackberry polysaccharides with different molecular weights. Journal of Agricultural and Food Chemistry. 2019;67(45):12428-12440. DOI: 10.1021/acs.jafc.9b03505

15. Elshire R.J., Glaubitz J.C., Sun Q., Poland J.A., Kawamoto K., Buckler E.S. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379. DOI: 10.1371/journal.pone.0019379

16. Eu G.S., Chung B.Y., Bandopadhyay R., Yoo N.H., Choi D.G., Yun S.J. Phylogenic relationships of Rubus species revealed by randomly amplified polymorphic DNA markers. Journal of Crop Science and Biotechnology. 2008;11(1):39-44.

17. FAOSTAT. Food and Agriculture Organization of the United Nations. Food and Agriculture Data: [website]. Available from: https://www.fao.org/faostat/en/#data/QCL [accessed Sept. 24, 2024].

18. Feliner G.N., Álvarez I., Fuertes-Aguilar J., Heuertz M., Marques I., Moharrek F. et al. Is homoploid hybrid speciation that rare? An empiricist’s view. Heredity (Edinburgh). 2017;118(6):513-516. DOI: 10.1038/hdy.2017.7

19. Focke W.O. Species Ruborum. Monographiae generis Rubi prodromus. Pars II. In: Chr. Luerssen (ed.). Bibliotheca Botanica. Vol. 72(I–II). Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung; 1911. p.121-223. [in Latin and German] DOI: 10.5962/bhl.title.15533

20. Foster T.M., Bassil N.V., Dossett M., Worthington M.L., Graham J. Genetic and genomic resources for Rubus breeding: a roadmap for the future. Horticulture Research. 2019;6(1):116. DOI: 10.1038/s41438-019-0199-2

21. Frenzke L., Röckel F., Wenke T., Schwander F., Grützmann K., Naumann J. et al. Genotyping-by-sequencing-based high-resolution mapping reveals a single candidate gene for the grapevine veraison locus Ver1. Plant Physiology. 2024;196(1):244-260. DOI: 10.1093/plphys/kiae272

22. Gao Z., Liu Y., Wang X., Wei X., Han J. DNA mini-barcoding: a derived barcoding method for herbal molecular identification. Frontiers in Plant Science. 2019;10:987. DOI: 10.3389/fpls.2019.00987

23. Graham J., Smith K., Woodhead M., Russell J. Development and use of simple sequence repeat SSR markers in Rubus species. Molecular Ecology Notes. 2002;2(3):250-252. DOI: 10.1046/j.1471-8286.2002.00203.x

24. Graham J., Squire G.R., Marshall B., Harrison R.E. Spatially dependent genetic diversity within and between colonies of wild raspberry Rubus idaeus detected using RAPD markers. Molecular Ecology. 1997;6(11):1001-1008. DOI: 10.1046/j.1365-294X.1997.00272.x

25. Gupta M., Chyi Y.S., Romero-Severson J., Owen J.L. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theoretical and Applied Genetics. 1994;89(7-8):998-1006. DOI: 10.1007/BF00224530

26. Gupta P.K., Roy J.K., Prasad M. Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Current Science. 2001;81(4):524-535.

27. Hayashi K., Yandell D.W. How sensitive is PCR-SSCP? Human Mutation. 1993;2(5):338-346. DOI: 10.1002/humu.1380020503

28. He J., Zhao X., Laroche A., Lu Z.H., Liu H., Li Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Frontiers in Plant Science. 2014;5:484. DOI: 10.3389/fpls.2014.00484

29. Hebert P.D.N., Cywinska A., Ball S.L., deWaard J.R. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B, Biological Sciences. 2003a;270(1512):313-321. DOI: 10.1098/rspb.2002.2218

30. Hebert P.D.N., Ratnasingham S., deWaard J.R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B, Biological Sciences. 2003b;270 Suppl 1):S96-S99. DOI: 10.1098/rsbl.2003.0025

31. Hollingsworth P.M., Li D.Z., van der Bank M., Twyford A.D. Telling plant species apart with DNA: from barcodes to genomes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2016;371(1702):20150338. DOI: 10.1098/rstb.2015.0338

32. Huang T.R., Chen J.H., Hummer K.E., Alice L.A., Wang W.H., He Y. et al. Phylogeny of Rubus (Rosaceae): integrating molecular and morphological evidence into an infrageneric revision. Taxon. 2023;72(2):278-306. DOI: 10.1002/tax.12885

33. Hummer K.E. Rubus diversity. HortScience. 1996;31(2):182-183. DOI: 10.21273/HORTSCI.31.2.182

34. Janzen D.H., Hallwachs W., Blandin P., Burns J.M., Cadiou J.M., Chacon I. et al. Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Molecular Ecology Resources. 2009;9 Suppl s1:1-26. DOI: 10.1111/j.17550998.2009.02628.x

35. Jehan T., Lakhanpaul S. Single nucleotide polymorphism (SNP) – methods and applications in plant genetics: a review. Indian Journal of Biotechnology. 2006;5:435-459.

36. Юзепчук С.В. Малина и ежевика – Rubus L. В кн.: Флора СССР. Т. 10 / под ред. В.Л. Комарова. Москва; Ленинград; 1941. С.5-58.

37. Каган Д.И., Шестибратов К.А., Лебедев В.Г., Азарова А.Б., Филиппов М.С., Бесов С.А. и др. Паспортизация сортов малины и ежевики и изучение их филогенетических взаимоотношений методом RAPD-анализа. В кн.: Биотехнологические приемы в сохранении биоразнообразия и селекции растений: материалы международной научной конференции; Минск, 18–20 августа 2014 г. Минск: Центральный ботанический сад; 2014. С.101-104. URL: http://hbc.bas-net.by/hbcinfo/books/Conf2014_Minsk_ CBG_biochim.pdf [дата обращения: 14.08.2024].

38. Kalendar R., Tanskanen J., Immonen S., Nevo E., Schulman A.H. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(12):6603-6607. DOI: 10.1073/pnas.110587497

39. Камнев А.М., Антонова О.Ю., Дунаева С.Е., Гавриленко Т.А., Чухина И.Г. Молекулярные маркеры в исследованиях генетического разнообразия представителей рода Rubus L. и перспективы их применения в селекции. Вавиловский журнал генетики и селекции. 2020;24(1):20-30. DOI: 10.18699/VJ20.591

40. Kane N.C., Cronk Q. Botany without borders: barcoding in focus. Molecular Ecology. 2008;17(24):5175-5176. DOI: 10.1111/j.1365-294X.2008.03972.x

41. Хлесткина Е.К. Молекулярные маркеры в генетических исследованиях и в селекции. Вавиловский журнал генетики и селекции. 2013;17(4/2):1044-1054.

42. Kimura T., Nishitani C., Iketani H., Ban Y., Yamamoto T. Development of microsatellite markers in rose. Molecular Ecology Notes. 2006;6(3):810-812. DOI: 10.1111/j.14718286.2006.01352.x

43. Колаковский А.А. Флора Абхазии: в четырех томах. Т. III. Тбилиси: Мецниереба; 1985.

44. Korekar G., Sharma R.K., Kumar R., Meenu, Bisht N.C., Srivastava R.B., et al. Identification and validation of sex-linked SCAR markers in dioecious Hippophae rhamnoides L. (Elaeagnaceae). Biotechnology Letters. 2012;34(5):973-978. DOI: 10.1007/s10529-012-0852-4

45. Красовская Л.С. Рубус – Rubus L. В кн.: Флора Восточной Европы. Т. X. /под ред. Н.Н. Цвелева. Санкт-Петербург; 2001. С.362-393.

46. Kyndt T., Van Droogenbroeck B., Romeijn-Peeters E., RomeroMotochi J.P., Scheldeman X., Goetghebeur P. et al. Molecular phylogeny and evolution of Caricaceae based on rDNA internal transcribed spacers and chloroplast sequence data. Molecular Phylogenetics and Evolution. 2005;37(2):442-459. DOI: 10.1016/j.ympev.2005.06.017

47. Lee J., Dossett M., Finn C.E. Rubus fruit phenolic research: the good, the bad, and the confusing. Food Chemistry. 2012;130(4):785-796. DOI: 10.1016/j.foodchem.2011.08.022

48. Li Y., Tong Y., Xing F. DNA barcoding evaluation and its taxonomic implications in the recently evolved genus Oberonia Lindl. (Orchidaceae) in China. Frontiers in Plant Science. 2016;7:1791. DOI: 10.3389/fpls.2016.01791

49. Lou R.N., Jacobs A., Wilder A.P., Therkildsen N.O. A beginner’s guide to low-coverage whole genome sequencing for population genomics. Molecular Ecology. 2021;30(23):5966-5993. DOI: 10.1111/mec.16077

50. Marieschi M., Torelli A., Poli F., Bianchi A., Bruni R. Quality control of commercial Mediterranean oregano: development of SCAR markers for the detection of the adulterants Cistus incanus L., Rubus caesius L. and Rhus coriaria L. Food Control. 2010;21(7):998-1003. DOI: 10.1016/j.foodcont.2009.12.018

51. Martini S., D’Addario C., Colacevich A., Focardi S., Borghini F., Santucci A. et al. Antimicrobial activity against Helicobacter pylori strains and antioxidant properties of blackberry leaves (Rubus ulmifolius) and isolated compounds. International Journal of Antimicrobial Agents. 2009;34(1):50-59. DOI: 10.1016/j.ijantimicag.2009.01.010

52. Marulanda M.L., López A.M., Aguilar S.B. Genetic diversity of wild and cultivated Rubus species in Colombia using AFLP and SSR markers. Crop Breeding and Applied Biotechnology. 2007;7(3):242-252. DOI: 10.12702/1984-7033.v07n03a03

53. Матвеева Т.В., Павлова О.А., Богомаз Д.И., Демкович Л.А., Лутова А.Е. Молекулярные маркеры для видоидентификации и филогенетики растений. Экологическая генетика. 2011;9(1):32-43.

54. Meier J.I., Marques D.A., Mwaiko S., Wagner C.E., Excoffier L., Seehausen O. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nature Communications. 2017;8(1):14363. DOI: 10.1038/ncomms14363

55. Miyashita T., Kunitake H., Yotsukura N., Hoshino Y. Assessment of genetic relationships among cultivated and wild Rubus accessions using AFLP markers. Scientia Horticulturae. 2015;193:165-173. DOI: 10.1016/j.scienta.2015.07.004

56. Mondini L., Noorani A., Pagnotta M.A. Assessing plant genetic diversity by molecular tools. Diversity. 2009;1(1):19-35. DOI: 10.3390/d1010019

57. Mueller U.G., Wolfenbarger L.L. AFLP genotyping and fingerprinting. Trends in Ecology and Evolution. 1999;14(10):389-394. DOI: 10.1016/S0169-5347(99)01659-6

58. Omelchenko D.O., Krinitsina A.A., Kasianov A.S., Speranskaya A.S., Chesnokova O.V., Polevova S.V. et al. Assessment of ITS1, ITS2, 5′-ETS, and trnL-F DNA barcodes for metabarcoding of Poaceae pollen. Diversity. 2022;14(3):191. DOI: 10.3390/d14030191

59. Parent J.G., Pagé D. Identification of raspberry cultivars by sequence characterized amplified region DNA analysis. HortScience. 1998;33(1):140-142.

60. Paudel D., Parrish S.B., Peng Z., Parajuli S., Deng Z. A chromosome-scale and haplotype-resolved genome assembly of tetraploid blackberry (Rubus L. subgenus Rubus Watson). Horticulture Research. [preprint] 2025. DOI: 10.1093/hr/uhaf052

61. Peterson G.W., Dong Y., Horbach C., Fu Y.B. Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping. Diversity. 2014;6(4):665-680. DOI: 10.3390/d6040665

62. Poland J.A., Rife T.W. Genotyping-by-sequencing for plant breeding and genetics. The Plant Genome. 2012;5(3):92-102. DOI: 10.3835/plantgenome2012.05.0005

63. Pradeep Reddy M., Sarla N., Siddiq E.A. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica. 2002;128(1):9-17. DOI: 10.1023/A:1020691618797

64. Ryu J., Kim W.J., Im J., Kim S.H., Lee K.S., Jo H.J. et al. Genotyping-by-sequencing based single nucleotide polymorphisms enabled Kompetitive Allele Specific PCR marker development in mutant Rubus genotypes. Electronic Journal of Biotechnology. 2018;35:57-62. DOI: 10.1016/j.ejbt.2018.08.001

65. Sa Y., Na D. Optimization of PCR-SSCP reaction system and reaction conditions in Crataegus spp. Agricultural Science and Technology. 2017;18(3):398-401.

66. Santana M.F., de Araújo E.F., de Souza J.T., Mizubuti E.S.G., de Queiroz M.V. Development of molecular markers based on retrotransposons for the analysis of genetic variability in Moniliophthora perniciosa. European Journal of Plant Pathology. 2012;134(3):497-507. DOI: 10.1007/s10658-012-0031-4

67. Sedighi E., Rahimmalek M. Evaluation of genetic diversity of Rubus hyrcanus using Inter Simple Sequence Repeat (ISSR) and morphological markers. Biologia. 2015;70(3):339-348. DOI: 10.1515/biolog-2015-0039

68. Sevindik E., Okan K., Sevindik M., Ercisli S. Genetic diversity and phylogenetic analyses of Juglans regia L. (Juglandaceae) populations using RAPD, ISSR markers and nrDNA ITS regions. Erwerbs-Obstbau. 2023;65(2):311-320. DOI: 10.1007/s10341-023-00834-7

69. Shahreki M., Mahdinezhad N., Fakheri B., Fahmideh L., Aran M. Evaluation of genetic diversity of Sistan native apple genotypes using IRAP and REMP markers. Pomology Research. 2022;7(1):19-28. DOI: 10.30466/rip.2021.53285.1155

70. Simla M., Ptak A., Kula A., Orzeł A. Assessment of genetic variability among raspberry accessions using molecular markers. Acta Scientiarum Polonorum Hortorum Cultus. 2018;17(5):61-72. DOI: 10.24326/asphc.2018.5.6

71. Соболев В.В., Соболева А.Г., Андреева Г.Н., Карлов Г.И. Оценка межвидового и межсортового полиморфизма малины и маркирование признака ремонтантности с использованием ISSR-ПЦР-анализа. Известия Тимирязевской сельскохозяйственной академии. 2009;(2):103-109.

72. Sochor M., Vašut R.J., Sharbel T.F., Trávníček B. How just a few makes a lot: Speciation via reticulation and apomixis on example of European brambles (Rubus subgen. Rubus, Rosaceae). Molecular Phylogenetics and Evolution. 2015;89:13-27. DOI: 10.1016/j.ympev.2015.04.007

73. Stafne E.T., Clark J.R., Pelto M.C., Lindstrom J.T. Discrimination of Rubus cultivars using RAPD markers and pedigree analysis. Acta Horticulturae. 2003;626:119-124. DOI: 10.17660/ActaHortic.2003.626.16

74. Tautz D., Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research. 1984;12(10):4127-4138. DOI: 10.1093/nar/12.10.4127

75. Techen N., Parveen I., Pan Z., Khan I.A. DNA barcoding of medicinal plant material for identification. Current Opinion in Biotechnology. 2014;25:103-110. DOI: 10.1016/j.copbio.2013.09.010

76. Tripodi P. The evolution of molecular genotyping in plant breeding. Agronomy. 2023;13(10):2569. DOI: 10.3390/agronomy13102569

77. Ugozzoli L., Wallace R.B. Allele-specific polymerase chain reaction. Methods. 1991;2(1):42-48. DOI: 10.1016/S10462023(05)80124-0

78. Uh Y.R., Jang C.S. Establishment of real-time polymerase chain reaction-based molecular markers to distinguish between Rubus coreanus and Rubus occidentalis. Journal of Agricultural, Life and Environmental Sciences. 2023;35(1):14-25. DOI: 10.22698/JALES.20230002

79. VanBuren R., Bryant D., Bushakra J.M., Vining K.J., Edger P.P., Rowley E.R. et al. The genome of black raspberry (Rubus occidentalis). The Plant Journal. 2016;87(6):535-547. DOI: 10.1111/tpj.13215

80. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research. 1995;23(21):4407-4414. DOI: 10.1093/nar/23.21.4407

81. Wang L., Lei T., Han G., Yue J., Zhang X., Yang Q. et al. The chromosome-scale reference genome of Rubus chingii Hu provides insight into the biosynthetic pathway of hydrolyzable tannins. The Plant Journal. 2021;107(5):1466-1477. DOI: 10.1111/tpj.15394

82. Wang M., Zhao H.X., Wang L., Wang T., Yang R.W., Wang X.L. et al. Potential use of DNA barcoding for the identification of Salvia based on cpDNA and nrDNA sequences. Gene. 2013;528(2):206-215. DOI: 10.1016/j.gene.2013.07.009

83. Wang Y., Chen Q., Chen T., Tang H., Liu L., Wang X. Phylogenetic insights into Chinese Rubus (Rosaceae) from multiple chloroplast and nuclear DNAs. Frontiers in Plant Science. 2016;7:968. DOI: 10.3389/fpls.2016.00968

84. Ward J.A., Boone W.E., Moore P.P., Weber C.A. Developing molecular markers for marker-assisted selection for resistance to raspberry bushy dwarf virus (RBDV) in red raspberry. Acta Horticulturae. 2012;946:61-66. DOI: 10.17660/ActaHortic.2012.946.6

85. Weber C.A. Genetic diversity in black raspberry detected by RAPD markers. HortScience. 2003;38(2):269-272.

86. Wight H., Zhou J., Li M., Hannenhalli S., Mount S., Liu Z. Draft genome assembly and annotation of red raspberry Rubus idaeus. BioRxiv. [preprint] 2019. DOI: 10.1101/546135

87. Williams J.G., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 1990;18(22):6531-6535. DOI: 10.1093/nar/18.22.6531

88. Wu Y., Li M., Yang Y., Jiang L., Liu M., Wang B. et al. Authentication of small berry fruit in fruit products by DNA barcoding method. Journal of Food Science. 2018;83(6):1494-1504. DOI: 10.1111/1750-3841.14177

89. Yang J.Y., Jang S.Y., Kim H.K., Park S.J. Development of a molecular marker to discriminate Korean Rubus species medicinal plants based on the nuclear ribosomal DNA internal transcribed spacer and chloroplast trnL-F intergenic region sequences. Journal of the Korean Society for Applied Biological Chemistry. 2012;55(2):281-289. DOI: 10.1007/s13765-012-1044-6

90. Yang J.Y., Pak J.H. Phylogeny of Korean Rubus (Rosaceae) based on ITS (nrDNA) and trnL/F intergenic region (cpDNA). Journal of Plant Biology. 2006;49(1):44-54. DOI: 10.1007/BF03030787

91. Yannic G., Baumel A., Ainouche M. Uniformity of the nuclear and chloroplast genomes of Spartina maritima (Poaceae), a salt-marsh species in decline along the Western European Coast. Heredity (Edinburgh). 2004;93(2):182-188. DOI: 10.1038/sj.hdy.6800491

92. Зернов А.С. Иллюстрированная флора юга Российского Причерноморья. Москва: КМК; 2013.

93. Zhou Z., Liu F., Xu Y., Hu W. Genetic diversity analysis and core germplasm construction of Rubus chingii Hu. Plants. 2024;13(5):618. DOI: 10.3390/plants13050618

94. Zhu S., Liu Q., Qiu S., Dai J., Gao X. DNA barcoding: an efficient technology to authenticate plant species of traditional Chinese medicine and recent advances. Chinese Medicine. 2022;17(1):112. DOI: 10.1186/s13020-022-00655-y

95. Zou M., Xia Z. Hyper-seq: A novel, effective, and flexible marker-assisted selection and genotyping approach. Innovation. 2022;3(4):100254. DOI: 10.1016/j.xinn.2022.100254


Рецензия

Для цитирования:


Журавлев И.Ю., Меньков М.Т., Маркова Е.Н., Добаркина Н.А., Евлаш А.Я., Шипилина Л.Ю., Розанов А.С. Актуальные методы идентификации гибридов растений на примере ежевики. Труды по прикладной ботанике, генетике и селекции. 2025;186(1):224-241. https://doi.org/10.30901/2227-8834-2025-1-224-241

For citation:


Zhuravlev I.Yu., Menkov M.T., Markova E.N., Dobarkina N.A., Evlash A.Ya., Shipilina L.Yu., Rozanov A.S. Current methods for identifying plant hybrids: a case study of blackberry. Proceedings on applied botany, genetics and breeding. 2025;186(1):224-241. (In Russ.) https://doi.org/10.30901/2227-8834-2025-1-224-241

Просмотров: 127


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)