Preview

Труды по прикладной ботанике, генетике и селекции

Расширенный поиск

NGS-секвенирование в селекционно-генетических исследованиях сои

https://doi.org/10.30901/2227-8834-2024-4-252-263

Аннотация

Соя (Glycine max (L.) Merr.) является одной из важнейших зернобобовых культур, производство которой растет с каждым годом и на 2024 г. составляет около 7 миллионов тонн. Целью данного обзора было обобщение последних достижений в селекции сои, в том числе с применением методов высокопроизводительного секвенирования и геномных технологий. Соя является одним из наиболее изучаемых растений. Ввиду ее важности для сельского хозяйства селекционеры постоянно реализуют в своей работе наиболее передовые методы. Исследования, выполненные в последние годы, показали преимущество подходов, основанных на применении молекулярно-генетических маркеров. Первый вариант последовательности генома сои, геном G. max ‘Williams 82’, представили в 2010 г., и это событие значимо ускорило изучение и развитие генетических исследований культуры. Полученные данные позволили создавать ресурсы, направленные как на изучение функциональной организации генов сои, так и на выведение новых улучшенных сортов. В обзоре обобщены результаты по крупным проектам секвенирования сои, в том числе и пангеномные работы. Описаны методы, применяющиеся для генетического картирования высокого разрешения, такие как анализ SNP с использованием чипов и метод GBS (genotyping-by-sequencing). Представлена информация о генах сои, связанных с хозяйственно ценными и селекционно значимыми признаками, идентификация которых позволила выделить их в качестве мишеней для редактирования.

Об авторах

М. Т. Меньков
Научно-технологический университет «Сириус», Центр генетики и наук о жизни; Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова
Россия

Михаил Тимофеевич Меньков младший научный сотрудник, Научно-технологический университет «Сириус», Научный центр генетики и наук о жизни, ФИЦ Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова.

354340 Краснодарский край, федеральная территория «Сириус», пгт. Сириус, Олимпийский пр., 1; 190000 Санкт-Петербург, ул. Б. Морская, 42, 44



И. В. Розанова
Научно-технологический университет «Сириус», Центр генетики и наук о жизни
Россия

Ирина Вениаминовна Розанова - кандидат биологических наук, старший научный сотрудник.

354340 Краснодарский край, федеральная территория «Сириус», пгт. Сириус, Олимпийский пр., 1



А. Я. Евлаш
Научно-технологический университет «Сириус», Центр генетики и наук о жизни
Россия

Анастасия Ярославовна Евлаш младший научный сотрудник.

354340 Краснодарский край, федеральная территория «Сириус», пгт. Сириус, Олимпийский пр., 1



Е. К. Хлесткина
Научно-технологический университет «Сириус», Центр генетики и наук о жизни; Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова
Россия

Елена Константиновна Хлесткина - доктор биологических наук, профессор РАН, директор, ФИЦ Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова, руководитель направления «Биология и биотехнология растений», НТУ «Сириус», Научный центр генетики и наук о жизни,

354340 Краснодарский край, федеральная территория «Сириус», пгт. Сириус, Олимпийский пр., 1; 190000 Санкт-Петербург, ул. Б. Морская, 42, 44



Список литературы

1. Barabaschi D., Tondelli A., Desiderio F., Volante A., Vaccino P., Valè G. et al. Next generation breeding. Plant Science. 2016;242:3-13. DOI: 10.1016/j.plantsci.2015.07.010

2. Berestovoy M.A., Pavlenko O.S., Goldenkova-Pavlova I.V. Plant fatty acid desaturases: role in the life of plants and biotechnological potential. Biology Bulletin Reviews. 2020;10(2):127-139. DOI: 10.1134/S2079086420020024

3. Bhat J.A., Ali S., Salgotra R.K., Mir Z.A., Dutta S., Jadon V. et al. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Frontiers in Genetics. 2016;7:221. DOI: 10.3389/fgene.2016.00221

4. Bhat J.A., Yu D. High-throughput NGS-based genotyping and phenotyping: Role in genomics-assisted breeding for soybean improvement. Legume Science. 2021;3(3):e81. DOI: 10.1002/leg3.81

5. Cai Y., Chen L., Hou W. Genome editing technologies accelerate innovation in soybean breeding. Agronomy. 2023;13(8):2045. DOI: 10.3390/agronomy13082045

6. Carter Jr.T.E., Hymowitz T., Nelson R.L. Biogeography, local adaptation, Vavilov, and genetic diversity in soybean. In: D. Werner (ed.). Biological Resources and Migration. Conference Proceedings. Berlin; Heidelberg: Springer-Verlag; 2004. p.47-59. DOI: 10.1007/978-3-662-06083-4_5

7. Carter Jr.T.E., Nelson R.L., Sneller C.H., Cui Z. Genetic diversity in soybean. In: R.M. Shibles, J.E. Harper, R.F. Wilson, R.C. Shoemaker (eds). Agronomy Monographs. Vol. 16. Soybeans: Improvement, Production, and Uses. 3rd ed. Madison, WI: ASA-CSSA-SSSA; 2004. p.303-416. DOI: 10.2134/agronmonogr16.3ed.c8

8. Che Z., Zhang S., Pu Y., Yang Y., Liu H., Yang H. et al. A novel soybean malectin-like receptor kinase-encoding gene, GmMLRK1, provides resistance to soybean mosaic virus. Journal of Experimental Botany. 2023;74(8):2692-2706. DOI: 10.1093/jxb/erad046

9. Chen X., Yang S., Zhang Y., Zhu X., Yang X., Zhang C. et al. Generation of male-sterile soybean lines with the CRISPR/Cas9 system. The Crop Journal. 2021;9(6):1270-1277. DOI: 10.1016/j.cj.2021.05.003

10. Chu J.C.C., Peng B., Tang K., Yi X., Zhou H., Wang H. et al. Eight soybean reference genome resources from varying latitudes and agronomic traits. Scientific Data. 2021;8(1):164. DOI: 10.1038/s41597-021-00947-2

11. Eathington S.R., Crosbie T.M., Edwards M.D., Reiter R.S., Bull J.K. Molecular markers in a commercial breeding program. Crop Science. 2007;47(53):154-163. DOI: 10.2135/cropsci2007.04.0015IPBS

12. Егоров О.С., Борисова Н.Ю., Борисова Е.Я., Режаббаев М.Л., Афанасьева Е.Ю., Арзамасцев Е.В. Структура и биологическое действие аналогов и производных биогенных полиаминов. Тонкие химические технологии. 2021;16(4):287-306. DOI: 10.32362/2410-6593-2021-16-4-287-306

13. Excoffier L., Lischer H. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. 2010;10(3):564-567. DOI: 10.1111/j.1755-0998.2010.02847.x

14. FAOSTAT. Food and Agriculture Organization of the United Nations. Food and Agriculture Data: [website]. Available from: https://www.fao.org/faostat/en/#data/QCL [accessed Mar. 30, 2024].

15. Federal State Statistics Service: [website]. [in Russian] (Федеральная служба государственной статистики: [сайт]). URL: https://rosstat.gov.ru/compendium/document/13277 [дата обращения: 30.03.2024].

16. Funatsuki H., Suzuki M., Hirose A., Inaba H., Yamada T., Hajika M. et al. Molecular basis of a shattering resistance boosting global dissemination of soybean. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(50):17797-17802. DOI: 10.1073/pnas.1417282111

17. Gaunt T.R., Rodriguez S., Zapata C., Day I.N.M. MIDAS: software for analysis and visualisation of interallelic disequilibrium between multiallelic markers. BMC Bioinformatics. 2006;7:227. DOI: 10.1186/1471-2105-7-227

18. Gorissen S.H.M., Crombag J.J.R., Senden J.M.G., Waterval W.A.H., Bierau J., Verdijk L.B. et al. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids. 2018;50(12):1685-1695. DOI: 10.1007/s00726-018-2640-5

19. Guit J., Tavares M.B.L ., Hul J., Ye C., Loos K., Jager J. et al. Photopolymer resins with biobased methacrylates based on soybean oil for stereolithography. ACS Applied Polymer Materials. 2020;2(2):949-957. DOI: 10.1021/acsapm.9b01143

20. He J., Zhao X., Laroche A., Lu Z.H., Liu H., Li Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Frontiers in Plant Science. 2014;5:484. DOI: 10.3389/fpls.2014.00484

21. Heppard E.P., Kinney A.J., Stecca K.L., Miao G.H. Developmental and growth temperature regulation of two different microsomal [omega]-6 desaturase genes in soybeans. Plant Physiology. 1996;110(1):311-319. DOI: org/10.1104/pp.110.1.311

22. Huang M., Zhang L., Zhou L., Wang M., Yung W.S., Wang Z. et al. An expedient survey and characterization of the soybean JAGGED 1 (GmJAG1) transcription factor binding preference in the soybean genome by modified ChIPmentation on soybean protoplasts. Genomics. 2021;113(1 Pt 1):344-355. DOI: 10.1016/j.ygeno.2020.12.026

23. Huang Y., Koo D.H., Mao Y., Herman E.M., Zhang J., Schmidt M.A. A complete reference genome for the soybean cv. Jack. Plant Communications. 2024;5(2):100765. DOI: 10.1016/j.xplc.2023.100765

24. Jeong S.C., Moon J.K., Park S.K., Kim M.S., Lee K., Lee S.R. et al. Genetic diversity patterns and domestication origin of soybean. Theoretical and Applied Genetics. 2019;132(4):1179-1193. DOI: 10.1007/s00122-018-3271-7

25. Kim J.M., Kim K.H., Jung J., Kang B.K., Lee J., Ha B.K. et al. Validation of marker-assisted selection in soybean breeding program for pod shattering resistance. Euphytica. 2020;216(11):166. DOI: 10.1007/s10681-020-02703-w

26. Kim M.S., Lee T., Baek J., Kim J.H., Kim C., Jeong S.C. Genome assembly of the popular Korean soybean cultivar Hwangkeum. G3 Genes|Genomes|Genetics. 2021;11(10):jkab272. DOI: 10.1093/g3journal/jkab272

27. Kim M.Y., Lee S., Van K., Kim T.H., Jeong S.C., Choi I.Y. et al. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(51):22032-22037. DOI: 10.1073/pnas.1009526107

28. Lakhssassi N., Zhou Z., Liu S., Colantonio V., AbuGhazaleh A., Meksem K. Characterization of the FAD2 gene family in soybean reveals the limitations of gel-based TILLING in genes with high copy number. Frontiers in Plant Science. 2017;8:324. DOI: 10.3389/fpls.2017.00324

29. Lavrent’yeva S.I., Bondarenko O.N., Blinova A.A., Penzin A.A., Fokina E.M., Ivachenko L.E. Study of the morphological and agriculturally important traits of the wild forms and cultivated varieties of soybean from the All-Russia Soybean Research Institute and soybean identification using microsatellites. Russian Agricultural Sciences. 2023;49(4):341-347. DOI: 10.3103/S1068367423040080

30. Li Z., Liu Z.B., Xing A., Moon B.P., Koellhoffer J.P., Huang L. et al. Cas9-Guide RNA directed genome editing in soybean. Plant Physiology. 2015;169(2):960-970. DOI: 10.1104/pp.15.00783

31. Liu J., Xie H., Lin T., Tie C., Luo H., Yang B. et al. Putative variants, genetic diversity and population structure among soybean cultivars bred at different ages in Huang-HuaiHai region. Scientific Reports. 2022;12(1):2372. DOI: 10.1038/s41598-022-06447-6

32. Liu N., Niu Y., Zhang G., Feng Z., Bo Y., Lian J. et al. Genome sequencing and population resequencing provide insights into the genetic basis of domestication and diversity of vegetable soybean. Horticulture Research. 2022;9:uhab052. DOI: 10.1093/hr/uhab052

33. Liu Q., Chang S., Hartman G.L., Domier L.L. Assembly and annotation of a draft genome sequence for Glycine latifolia, a perennial wild relative of soybean. The Plant Journal. 2018;95(1):71-85. DOI: 10.1111/tpj.13931

34. Liu Y., Du H., Li P., Shen Y., Peng H., Liu S. et al. Pan-genome of wild and cultivated soybeans. Cell. 2020;182(1):162-176. DOI: 10.1016/j.cell.2020.05.023

35. Liu Y., Tian Z. From one linear genome to a graph-based pan-genome: a new era for genomics. Science China. Life Sciences. 2020;63(12):1938-1941. DOI: 10.1007/s11427-020-1808-0

36. Liu Z., Li H., Wen Z., Fan X., Li Y., Guan R. et al. Comparison of genetic diversity between Chinese and American soybean (Glycine max (L.)) Accessions revealed by high-density SNPs. Frontiers in Plant Science. 2017;8:2014. DOI: 10.3389/fpls.2017.02014

37. Liu Z., Yang Q., Liu B., Li C., Shi X., Wei Y. et al. De novo genome assembly of a high-protein soybean variety HJ117. BMC Genomic Data. 2024;25(1):25. DOI: 10.1186/s12863-024-01213-1

38. Luo J., Zhou Y., Gao Q., Li J., Yan N. From wastes to functions: a new soybean meal and bark-based adhesive. ACS Sustainable Chemistry and Engineering. 2020;8(29):10767-10773. DOI: 10.1021/acssuschemeng.0c02413

39. Lyu J. Pan-genome upgrade. Nature Plants. 2020;6:732. DOI: 10.1038/s41477-020-0731-2

40. Ma J., Sun S., Whelan J., Shou H. CRISPR/Cas9-mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds. International Journal of Molecular Sciences. 2021;22(8):3877. DOI: 10.3390/ijms22083877

41. Ma X., Fan L., Zhang Z., Yang X., Liu Y., Ma Y. et al. Global dissection of the recombination landscape in soybean using a high-density 600K SoySNP array. Plant Biotechnology Journal. 2023;21(3):606-620. DOI: 10.1111/pbi.13975

42. Padgette S.R., Kolacz K.H., Delannay X., Re D.B., LaVallee B.J., Tinius C.N. et al. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Science. 1995;35(5):1451-1461. DOI: 10.2135/cropsci1995.0011183X003500050032x

43. Park G.T., Moon J.K., Park S., Park S.K., Baek J., Seo M.S. Genome-wide analysis of KIX gene family for organ size regulation in soybean (Glycine max L.). Frontiers in Plant Science. 2023;14:1252016. DOI: 10.3389/fpls.2023.1252016

44. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-959. DOI: 10.1093/genetics/155.2.945

45. Pritchard J.K., Stephens M., Rosenberg N.A., Donnelly P. Association mapping in structured populations. American Journal of Human Genetics. 2000;67(1):170-181. DOI: 10.1086/302959

46. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A.R., Bender D. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics. 2007;81(3):559-575. DOI: 10.1086/519795

47. Reyes V.P., Kitony J.K., Nishiuchi S., Makihara D., Doi K. Utilization of genotyping-by-sequencing (GBS) for rice pre-breeding and improvement: a review. Life (Basel). 2022;12(11):1752. DOI: 10.3390/life12111752

48. Schmutz J., Cannon S.B., Schlueter J., Ma J., Mitros T., Nelson W. et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463(7278):178-183. DOI: 10.1038/nature08670

49. Сеферова И.В., Вишнякова М.А. Вклад сельскохозяйственных опытных учреждений китайско-восточной железной дороги в формирование коллекции сои ВИР и в развитие ее селекции в СССР. Вавиловский журнал генетики и селекции. 2014;18(3):572-577.

50. Shen Y., Liu J., Geng H., Zhang J., Liu Y., Zhang H. et al. De novo assembly of a Chinese soybean genome. Science China. Life Sciences. 2018;61(8):871-884. DOI: 10.1007/s11427-018-9360-0

51. Song Q., Hyten D.L., Jia G., Quigley C.V., Fickus E.W., Nelson R.L. et al. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One. 2013;8(1):54985. DOI: 10.1371/journal.pone.0054985

52. Song Q., Hyten D.L., Jia G., Quigley C.V., Fickus E.W., Nelson R.L. et al. Fingerprinting soybean germplasm and its utility in genomic research. G3 Genes|Genomes|Genetics. 2015;5(10):1999-2006. DOI: 10.1534/g3.115.019000

53. Suyama Y., Matsuki Y. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Scientific Reports. 2015;5:16963. DOI: /10.1038/srep16963

54. Tang G.Q., Novitzky W.P., Griffin H.C., Huber S.C., Dewey R.E. Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. The Plant Journal. 2005;44(3):433-446. DOI: 10.1111/j.1365-313X-2005.02535.x

55. Telfer E., Graham N., Macdonald L., Li Y., Klápště J., Resende M, et al. A high-density exome capture genotype-by-sequencing panel for forestry breeding in Pinus radiata. PLoS One. 2019;14(9):0222640. DOI: 10.1371/journal.pone.0222640

56. Torkamaneh D., Lemay M., Belzile F. The pan-genome of the cultivated soybean (PanSoy) reveals an extraordinarily conserved gene content. Plant Biotechnology Journal. 2021;19(9):1852-1862. DOI: 10.1111/pbi.13600

57. Ухатова Ю.В., Ерастенкова М.В., Коршикова Е.С., Крылова Е.А., Михайлова А.С., Семилет Т.В. и др. Улучшение культурных растений при помощи системы CRISPR/Cas: новые гены-мишени. Молекулярная биология. 2023;57(3):387-410. DOI: 10.31857/S0026898423030151

58. Valliyodan B., Brown A.V., Wang J., Patil G., Liu Y., Otyama P.I. et al. Genetic variation among 481 diverse soybean accessions, inferred from genomic re-sequencing. Scientific Data. 2021;8(1):50. DOI: 10.1038/s41597-021-00834-w

59. Wang L., Lin F., Li L., Li W., Yan Z., Luan W. et al. Genetic diversity center of cultivated soybean (Glycine max) in China – New insight and evidence for the diversity center of Chinese cultivated soybean. Journal of Integrative Agriculture. 2016;15(11):2481-2487. DOI: 10.1016/S2095-3119(15)61289-8

60. Zhou J., Li Z., Li Y., Zhao Q., Luan X., Wang L. et al. Effects of different gene editing modes of CRISPR/Cas9 on soybean fatty acid anabolic metabolism based on GmFAD2 family. International Journal of Molecular Sciences. 2023;24(5):4769. DOI: 10.3390/ijms24054769

61. Zhou Z., Jiang Y., Wang Z., Gou Z., Lyu J., Li W. et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology. 2015;33(4):408-414. DOI: 10.1038/nbt.3096

62. Zou M., Xia Z. Hyper-seq: A novel, effective, and flexible marker-assisted selection and genotyping approach. Innovation. 2022;3(4):100254. DOI: 10.1016/j.xinn.2022.100254


Рецензия

Для цитирования:


Меньков М.Т., Розанова И.В., Евлаш А.Я., Хлесткина Е.К. NGS-секвенирование в селекционно-генетических исследованиях сои. Труды по прикладной ботанике, генетике и селекции. 2024;185(4):252-263. https://doi.org/10.30901/2227-8834-2024-4-252-263

For citation:


Menkov M.T., Rozanova I.V., Evlash A.Ya., Khlestkina E.K. Next-generation sequencing in soybean breeding and genetic research. Proceedings on applied botany, genetics and breeding. 2024;185(4):252-263. (In Russ.) https://doi.org/10.30901/2227-8834-2024-4-252-263

Просмотров: 304


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)