Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Wheat landraces as sources of high grain quality and nutritional properties

https://doi.org/10.30901/2227-8834-2023-4-103-115

Abstract

Background. Improving the grain quality of modern spring bread wheat cultivars is a highly relevant task of breeding. To solve this problem, old and local wheat varieties (landraces) are of considerable interest. A rich collection of them is available among the plant genetic resources preserved at VIR. With this in view, the aim of this research was to identify sources of high protein, gluten, macro- and micronutrient content out of the landraces from the VIR collection for improvement of wheat grain quality through breeding.

Materials and methods. Field and laboratory research were conducted in the experimental field of Omsk State Agrarian University under the conditions of the southern forest-steppe of Western Siberia in 2020–2021. Sowing was carried out on fallow on conventional sowing dates. Mineral composition in the grain of the studied landraces was analyzed at the Kurchatov Genomic Center, Novosibirsk, using atomic absorption spectrometry techniques.

Results. The research results showed that landraces from different regions of Russia, Kazakhstan, Tajikistan, and Kyrgyzstan were characterized by high levels of protein (18.4–18.8%) and gluten (35.9–36.0%) in grain. Landraces from Kazakhstan had low Zn content (on average 38.3 mg/kg), while those from Kyrgyzstan, on the contrary, had high content of Zn (41.9 mg/kg) and Fe (55.1 mg/kg), and landraces from Tajikistan had high K content (3820 mg/kg). A positive relationship between the concentrations of Mg, Mn, Fe, and Zn was found in the grain of wheat landraces.

Conclusion. Wheat landraces are of interest as genetic resources for the development of high-protein cultivars with improved nutritional value of grain for the milling and breadmaking industries.

About the Authors

V. P. Shamanin
Omsk State Agrarian University named after P.A. Stolypin
Russian Federation

Vladimir P. Shamanin, Dr. Sci. (Agriculture), Professor

1 Institutskaya Sq., Omsk 644008



I. V. Pototskaya
Omsk State Agrarian University named after P.A. Stolypin
Russian Federation

Inna V. Pototskaya, Dr. Sci. (Agriculture), Professor

1 Institutskaya Sq., Omsk 644008



S. A. Esse
Omsk State Agrarian University named after P.A. Stolypin
Russian Federation

Svetlana A. Esse, Postgraduate Student

1 Institutskaya Sq., Omsk 644008



M. S. Gladkih
Omsk State Agrarian University named after P.A. Stolypin
Russian Federation

Marina S. Gladkih, Cand. Sci. (Agriculture), Аgronomist

1 Institutskaya Sq., Omsk 644008



S. S. Shepelev
Omsk State Agrarian University named after P.A. Stolypin
Russian Federation

Sergey S. Shepelev, Cand. Sci. (Agriculture), Head of a Laboratory,

1 Institutskaya Sq., Omsk 644008



E. V. Zuev
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Evgeny V. Zuev, Cand. Sci. (Agriculture), Leading Researcher, Acting Head of a Department

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



N. A. Vinichenko
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Kurchatov Genomic Center
Russian Federation

Natalia A. Vinichenko, Engineer

10 Akademika Lavrentyeva Ave., Novosibirsk 630090



H. Koksel
Istinye University
Turkey

Hamit Koksel, Рrofessor

9 Edirne Çírpící Yolu, Istanbul 34010



A. I. Morgounov
S. Seifullin Kazakh Agro Technical Research University
Kazakhstan

Alexey I. Morgounov, Cand. Sci. (Agriculture), Leading Researcher

62 Zhenis Ave., Astana 010011



References

1. Akcura M., Kokten K. Variations in grain mineral concentrations of Turkish wheat landraces germplasm. Quality Assurance and Safety of Crops and Foods. 2017;9(2):153-159. DOI: 10.3920/QAS2016.0886

2. Baboev S., Muminjanov H., Turakulov K., Buronov A., Mamatkulov I., Koc E. et al. Diversity and sustainability of wheat landraces grown in Uzbekistan. Agronomy for Sustainable Development. 2021;41(3):34. DOI: 10.1007/s13593-021-00691-2

3. Chen X.P., Zhang Y.Q., Tong Y.P., Xue Y.F., Liu D.Y., Zhang W. et al. Harvesting more grain zinc of wheat for human health. Scientific Reports. 2017;7(1):7016. DOI: 10.1038/s41598-017-07484-2

4. Dospekhov B.A. Methodology of field trial (with fundamentals of statistical processing of research results) (Metodika polevogo opyta [s osnovami statisticheskoy obrabotki resultatov issledovaniy]). Moscow: Agropromizdat; 1985. [in Russian]

5. Fan M.S., Zhao F.J., Fairweather-Tait S.J., Poulton P.R., Dunham S.J., McGrath S.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. Journal of Trace Elements in Medicine and Biology. 2008;22(4):315-324. DOI: 10.1016/j.jtemb.2008.07.002

6. FAOSTAT. Food and Agriculture Organization of the United Nations. Food and Agriculture Data: [website]. Available from: https://www.fao.org/faostat/ [accessed Feb. 09, 2023].

7. Guttieri M.J., Baenziger P.S., Frels K., Carver B., Arnall B., Waters B.M. Variation for grain mineral concentration in a diversity panel of current and historical Great Plains hard winter wheat germplasm. Crop Breeding and Genetics. 2015;55(3):1035-1052. DOI: 10.2135/cropsci2014.07.0506

8. Hernández-Espinosa N., Mondal S., Autrique E., Gonzalez-Santoyo H., Crossa J., Huerta-Espino J. et al. Milling, processing and end-use quality traits of CIMMYT spring bread wheat germplasm under drought and heat stress. Field Crops Research. 2018;215:104-112. DOI: 10.1016/J.FCR.2017.10.003

9. Husenov B., Muminjanov H., Dreisigacker S., Otambekova M., Akin B., Subasi K. et al. Genetic diversity and agronomic performance of wheat landraces currently grown in Tajikistan. Crop Science. 2021;61(4):2548-2564. DOI: 10.1002/csc2.20463

10. Jakobsone I., Kantane I., Zute S., Jansone I., Bartkeviès V. Macroelements and trace elements in cereal grains cultived refe rences in Latvia. Proceeding of the Latvian Academy of Science. Section B. Natural, Exact and Applied Sciences. 2015;69(4):152-157. DOI: 10.1515/prolas-2015-0022

11. Krishnappa G., Singh A.M., Chaudhary S., Ahlawat A.K., Singh S.K., Shukla R.B et al. Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.). PLoS One. 2017;12(4):e0174972. DOI: 10.1371/journal.pone.0174972

12. Manickavelu A., Jighly A., Ban T. Molecular evaluation of orphan Afghan common wheat (Triticum aestivum L.) landraces collected by Dr. Kihara using single nucleotide polymorphic markers. BMC Plant Biology. 2014;14(1):320. DOI: 10.1186/s12870-014-0320-5

13. Marcos-Barbero E.L., Pérez P., Martínez-Carrasco R., Arellano J.B., Morcuende R. Genotypic variability on grain yield and grain nutritional quality characteristics of wheat grown under elevated CO2 and high temperature. Plants. 2021;10(6):1043. DOI: 10.3390/plants10061043

14. Marles R.J. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. Journal of Food Composition and Analysis. 2017;56:93-103. DOI: 10.1016/j.jfca.2016.11.012

15. Martínez-Ballesta M.C., Dominguez-Perles R., Moreno D.A., Muries B., Alcaraz-López C., Bastías E., García-Viguera C., Carvajal M. Minerals in plant food: Effect of agricultural practices and role in human health. A review. Agronomy for Sustainable Development. 2010;30(2):295-309. DOI: 10.1051/agro/2009022

16. Maryami Z., Huertas-García A.B., Azimi M.R., Hernández-Espinosa N., Payne T., Cervantes F. et al. Variability for glutenins, gluten quality, iron, zinc and phytic acid in a set of one hundred and fifty-eight common wheat landraces from Iran. Agronomy. 2020;10(11):1797. DOI: 10.3390/agronomy10111797

17. Mitrofanova O.P., Khakimova A.G. New genetic resources in wheat breeding for an increased grain protein content. Vavilov Journal of Genetics and Breeding. 2016;20(4):545-554. [in Russian]. DOI: 10.18699/VJ16.177

18. Morgounov A., Gomez-Becerra H.F., Abugalieva A., Dzhunusova M., Yessimbekova M., Muminjanov H. et al. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica. 2007;155(1-2):193-203. DOI: 10.1007/s10681-006-9321-2

19. Morgounov A., Keser M., Kan M., Küçükçongar M., Özdemir F., Gummadov N. et al. Wheat landraces currently grown in Turkey: distribution, diversity, and use. Crop Science. 2016;56(6): 3112-3124. DOI: 10.2135/cropsci2016.03.0192

20. Murphy K.M., Reeves P.G., Jones S.S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica. 2008;163(3):381-390. DOI: 10.1007/s10681-008-9681-x

21. Pototskaya I.V., Shamanin V.P., Shepelev S.S., Bhatta M., Morgounov A.I. Analysis of the genome D polymorphism of synthetic wheat obtained on the basis of Ae. tauschii L. Russian Journal of Genetics. 2021;57(2):188-195. DOI: 10.1134/S1022795421020083

22. Qamar Z.U., Bansal U.K., Dong C.M., Alfred R.L., Bhave M., Bariana H.S. Detection of puroindoline (Pina-D1 and Pinb-D1) allelic variation in wheat landraces. Journal of Cereal Science. 2014;60(3):610-616. DOI: 10.1016/j.jcs.2014.07.007

23. Sehgal D., Dreisigacker S., Belen S., Küçüközdemir Ü., Mert Z., Özer E. et al. Mining centuries оld in situ conserved Turkish wheat landraces for grain yield and stripe rust resistance genes. Frontiers in Genetics. 2016;7:201. DOI: 10.3389/fgene.2016.00201

24. Shewry P.R. Do ancient types of wheat have health benefits compared with modern bread wheat? Journal of Cereal Science. 2018;79:469-476. DOI: 10.1016/j.jcs.2017.11.010

25. Shewry P.R., Pellny T.K., Lovegrove A. Is modern wheat bad for health? Nature Plants. 2016;2(7):16097. DOI: 10.1038/nplants.2016.97

26. Shukla A.K., Behera S.K., Pakhre A., Chaudhary S.K. Micronutrients in soils, plants, animals and humans. Indian Journal of Fertilisers. 2018;14(4):30-54.

27. Suchowilska E., Wiwart M., Kandler W., Krska R. A comparison of macro- and microelement concentrations in the whole grain of four Triticum species. Plant, Soil and Environment. 2012;58(3):141-147. DOI: 10.17221/688/2011-PSE

28. Velu G., Crespo-Herrera L., Huert J., Payne T., Guzman C., Singh R.P. Assessing genetic diversity to breed competitive biofortified wheat with increased grain Zn and Fe concentrations. Frontiers in Plant Science. 2019;9:1971. DOI: 10.3389/fpls.2018.01971

29. Wang M., Kong F., Liu R., Fan Q., Zhang X. Zinc in wheat grain, processing, and food. Frontiers in Nutrition. 2020;7:124. DOI: 10.3389/fnut.2020.00124

30. Winfield M.O., Allen A.M., Wilkinson P.A., Burridge A.J., Barker G.L.A., Coghill J. et al. High density genotyping of the A.E. Watkins collection of hexaploid landraces identifies a large molecular diversity compared to elite bread wheat. Plant Biotechnology Journal. 2018;16(1):165-175. DOI: 10.1111/pbi.12757

31. Wingen L.U., Orford S., Goram R., Leverington-Waite M., Bilham L., Patsiou T.S. et al. Establishing the A.E. Watkins land race cultivar collection as a resource for systematic gene discovery in bread wheat. Theoretical and Applied Genetics. 2014;127(8):1831-1842. DOI: 10.1007/s00122-014-2344-5

32. Zuev E.V., Brykova A.N., Kudryavtseva E.Yu. Results of analyzing the passport database ‘spring bread wheat landraces in the VIR collection’. Proceedings on Applied Botany, Genetics and Breeding. 2019;180(1):7-11. DOI: 10.30901/2227-8834-2019-1-7-11. [in Russian]


Review

For citations:


Shamanin V.P., Pototskaya I.V., Esse S.A., Gladkih M.S., Shepelev S.S., Zuev E.V., Vinichenko N.A., Koksel H., Morgounov A.I. Wheat landraces as sources of high grain quality and nutritional properties. Proceedings on applied botany, genetics and breeding. 2023;184(4):103-115. (In Russ.) https://doi.org/10.30901/2227-8834-2023-4-103-115

Views: 580


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)