Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Genome assembly of Vitis rotundifolia Michx. using third-generation sequencing (Oxford Nanopore Technologies)

https://doi.org/10.30901/2227-8834-2021-2-63-71

Abstract

The immune North American grapevine species Vitis rotundifolia Michaux (subgen. Muscadinia Planch.) is regarded as a potential donor of disease resistance genes, withstanding such dangerous diseases of grapes as powdery and downy mildews. The cultivar ‘Dixie’ is the only representative of this species preserved ex situ in Russia: it is maintained by the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) in the orchards of its branch, Krymsk Experiment Breeding Station. Third-generation sequencing on the MinION platform was performed to obtain information on the primary structure of the cultivar’s genomic DNA, employing also the results of Illumina sequencing available in databases. A detailed description of the technique with modifications at various stages is presented, as it was used for grapevine genome sequencing and whole-genome sequence assembly. The modified technique included the main stages of the original protocol recommended by the MinION producer: 1) DNA extraction; 2) preparation of libraries for sequencing; 3) MinION sequencing and bioinformatic data processing; 4) de novo whole-genome sequence assembly using only MinION data or hybrid assembly (MinION+Illumina data); and 5) functional annotation of the whole-genome assembly. Stage 4 included not only de novo sequencing, but also the analysis of the available bioinformatic data, thus minimizing errors and increasing precision during the assembly of the studied genome. The DNA isolated from the leaves of cv. ‘Dixie’ was sequenced using two MinION flow cells (R9.4.1).

About the Authors

M. M. Agakhanov
N.I . Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



E. A. Grigoreva
Saint-Petersburg State Forest Technical University named after S.M. Kirov
Russian Federation

5 Institutsky Lane, St Petersburg, 199034



E. K. Potokina
https://spbftu.ru/lectors/potokina-elena-kirilovna/
Saint-Petersburg State Forest Technical University named after S.M. Kirov
Russian Federation

5 Institutsky Lane, St Petersburg, 199034



P. S. Ulianich
https://arriam.ru/obrazovatelnaya-deyatelnost/aspirantura/phd-students/ulyanich-pavel-stanislavovich/
All-Russian Research Institute for Agricultural Microbiology
Russian Federation

10 Shosse Podbelskogo, Pushkin, St. Petersburg, 196608



Y. V. Ukhatova
https://www.vir.nw.ru/direktsiya/#1545032421144-260807b3-8b82
N.I . Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



References

1. Antipov D., Hartwick N., Shen M., Raiko M., Lapidus A., Pevzner P.A. PlasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics. 2016;32(22):3380-3387. DOI: 10.1093/bioinformatics/btw493

2. Barker C.L., Donald T., Pauquet J., Ratnaparkhe M.B., Bouquet A., Adam-Blondon A.F. et al. Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theoretical and Applied Genetics. 2005;111(2):370-377. DOI: 10.1007/s00122-005-2030-8

3. Canaguier C.A., Grimplet J., Di Gaspero G., Scalabrin S., Duchêne E., Choisne N. et al. A new version of the grapevine reference genome assembly (12X. v2) and of its annotation (VCost. v3). Genomics Data. 2017;14:56-62. DOI: 10.1016/j.gdata.2017.09.002

4. Cochetel N., Minio A., Massonnet M., Vondras A., FigueroaBalderas R., Cantu D. Diploid chromosome-scale assembly of the Muscadinia rotundifolia genome supports chromosome fusion and disease resistance gene expansion during Vitis and Muscadinia divergence. G3 (Bethesda). 2021;11(4):jkab033. DOI: 10.1093/g3journal/jkab033

5. De Coster W., D’Hert S., Schultz D.T., Cruts M., Van Broeckhoven Ch. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34(15):2666-2669. DOI: 10.1093/bioinformatics/bty149

6. De Maio N., Shaw L.P., Hubbard A., George S., Sanderson N.D., Swann J. et al. Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microbial Genomics. 2019;5(9):e000294. DOI: 10.1099/mgen.0.000294 de.NBI Nanopore Training Course. The Tutorial Data Set. Basecalling. 2019. Available from: https://denbi-nanopore-training-course.readthedocs.io/en/latest/basecalling/index.html [accessed Dec. 10, 2020].

7. Ewing B., Green P. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Research. 1998;8(3):186-194. DOI: 10.1101/gr.8.3.186

8. Grigoreva E., Ulianich P., Ben C., Gentzbittel L., Potokina E. First insights into the guar (Cyamopsis tetragonoloba (L.) Taub.) genome of the ‘Vavilovskij 130’ accession, using second and third-generation sequencing technologies. Russian Journal of Genetics. 2019;55(11):1406-1416. DOI: 10.1134/S102279541911005X

9. Gurevich A., Saveliev V., Vyahhi N., Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072-1075. DOI: 10.1093/bioinformatics/btt086

10. Leger A., Leonardi T. PycoQC, interactive quality control for Oxford Nanopore Sequencing. Journal of Open Source Software. 2019;4(34):1236. DOI: 10.21105/joss.01236

11. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics. 2016;32(14):2103-2110. DOI: 10.1093/bioinformatics/btw152

12. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094-3100. DOI; 10.1093/bioinformatics/bty191

13. Loman N.J., Quinlan A.R. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics. 2014;30(23): 3399-3401. DOI: 10.1093/bioinformatics/btu555

14. NCBI: National Center for Biotechnology Information. Bioproject 649974. Vitis rotundifolia cultivar: Dixie. Vitis rotundifolia Michx. whole genome sequencing and assembly using nanopore technology (Oxford Nanopore Technologies). Accession: PRJNA649974. Registration date: Nov. 10, 2020. Available from: https://www.ncbi.nlm.nih.gov/bioproject/649974 [accessed Dec. 07, 2020].

15. Seppey M., Manni M., Zdobnov E.M. BUSCO: assessing genome assembly and annotation completeness. Methods in Molecular Biology. 2019;1962:227-245. DOI: 10.1007/978-1-4939-9173-0_14

16. Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210-3212. DOI: 10.1093/bioinformatics/btv351

17. Stanke M., Keller O., Gunduz I., Hayes A., Waack S., Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic acids research. 2006;34 Suppl 2:W435-W439. DOI: 10.1093/nar/gkl200

18. Tarailo-Graovac M., Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics. 2009;25(1):4.10.1-4.10.14. DOI: 10.1002/0471250953.bi0410s25

19. Vaser R., Sović I., Nagarajan N., Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Research. 2017;27(5):737-746. DOI: 10.1101/gr.214270.116

20. Volynkin V.A., Zlenko V.A., Poluliakh A.A., Oleinikov N.P., Li khov skoi V.V. Results of experiment research into the formation of genetic diversity in the Vita ceae family during natural evolution. Magarach. Viticulture and Winemaking. 2010;40:12-16. [in Russian]

21. Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar Sh. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. DOI: 10.1371/journal.pone.0112963

22. Wick R.R., Judd L.M., Holt K.E. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biology. 2019;20(1):129. DOI: 10.1186/s13059-019-1727-y

23. Zini E., Dolzani Ch., Stefanini M., Gratl V., Bettinelli P., Nicolini D. et al. R-loci arrangement versus downy and powdery mildew resistance level: A Vitis hybrid survey. International Journal of Molecular Sciences. 2019;20(14):3526. DOI: 10.3390/ijms20143526


Supplementary files

1. Supplement 1
Subject
Type Исследовательские инструменты
Download (295KB)    
Indexing metadata ▾

Review

For citations:


Agakhanov M.M., Grigoreva E.A., Potokina E.K., Ulianich P.S., Ukhatova Y.V. Genome assembly of Vitis rotundifolia Michx. using third-generation sequencing (Oxford Nanopore Technologies). Proceedings on applied botany, genetics and breeding. 2021;182(2):63-71. (In Russ.) https://doi.org/10.30901/2227-8834-2021-2-63-71

Views: 933


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)