Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Composition of the collection of primitive cultivated species within the Solanum L. section Petota Dumort. and contemporary trends in their research

https://doi.org/10.30901/2227-8834-2020-3-190-202

Abstract

The diversity of potato genetic resources in the VIR genebank harbors one of the world’s first collections of primitive cultivated species. These accessions are native potato varieties cultivated by the indigenous population of South America. The oldest accessions in the collection are traced back to 1927. Approximately one fifth of the collection (106 accessions out of 573) is the unique material procured by VIR’s collecting missions to Bolivia, Colombia, Ecuador, and Peru. According to S. Bukasov’s potato classification, the diversity of South American highland potatoes explored by VIR’s collectors belongs to spp. Solanum ajanhuiri Juz. et Buk., S. × chaucha Juz. et Buk., S. mammilliferum Juz. et Buk., S. phureja Juz. et Buk., S. rybinii Juz. et Buk., S. goniocalyx Juz. et Buk., S. stenotomum Juz. et Buk., S. tenuifilamentum Juz. et Buk., S.× juzepczukii Buk., and S. × curtilobum Juz. et Buk. Within this group of species, S. × ajanhuiri, S. phureja and S. stenostomum are the closest in their characteristics to ancient domesticated forms of tuber-bearing Solanum spp. This publication is an analytical review of the current composition of the primitive cultivated potato species collection and the results of its earlier studies. Ecogeographic descriptions of the sites native for cultivated potatoes and information on the sources of the accessions are presented. A large-scale evaluation of primitive cultivated potato accessions by a set of characters, carried out in field and laboratory experiments, uncovers their breeding potential and serves as the primary information platform for further indepth research. Studying S. phureja and closely related cultivated potato species is important for finding solutions of fundamental problems in plant biology. The data arrays accumulated today would facilitate targeted selection among accessions to identify most promising ones for molecular genetic studies into the gene pool diversity of potato species.

About the Authors

E. V. Rogozina
https://www.vir.nw.ru/aspirantura/rogozina-elena-vyacheslavovna/
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000; Department of Potato Genetic Resources


A. A. Gurina
https://www.vir.nw.ru/aspirantura/gurina-alyona-alekseevna/
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000; Department of Potato Genetic Resources


References

1. Anglin N.L., Amri A., Kehel Z., Ellis D. A case of need: linking traits to genebank accessions. Biopreservation and Biobanking. 2018;16(5):337-349. DOI: 10.1089/bio.2018.0033

2. Antonova O.Yu., Apalikova O.V., Ukhatova Yu.V., Krylova E.A., Shuvalov O.Yu., Shuvalova A.R. et al. Eradication of viruses in microplants of three cultivated potato species (Solanum tuberosum L., S. phureja Juz. & Buk., S. stenotomum Juz. & Buk.) using combined thermo-chemotherapy method. Agricultural Biology. 2017;52(1):95-104. [in Russian] DOI: 10.15389/agrobiology.2017.1.95rus

3. Arce A., de Haan S., Juarez H., Burra D.D., Plasencia F., Ccanto R. et al. The spatial-temporal dynamics of potato agrobiodiversity in the highlands of Central Peru: A case study of smallholder management across farming landscapes. Land. 2019;8(11):169. DOI: 10.3390/land8110169

4. Aversano R., Contaldi F., Ercolano M.R., Grosso V., Iorizzo M., Tatino F. et al. The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. The Plant Cell. 2015; 27(4):954-968. DOI: 10.1105/tpc.114.135954

5. Bavyko N.F. Catalogue of the VIR global collection. Issue 519. Primitive cultural potato species from South America. Leningrad: VIR; 1989. [in Russian]

6. Bavyko N.F. Tolerance and resistance in primitive cultivated potato species to single viruses. Bulletin of Applied Botany, Genetics and Plant Breeding. 1987;115:49-53. [in Russian]

7. Bradshaw J. Potato breeding at the Scottish Plant Breeding Station and the Scottish Crop Research Institute: 1920– 2008. Potato Research. 2009;52(2):141-172. DOI: 10.1007/s11540-009-9126-5

8. Bukasov S.M. Principles of the systematics of potatoes. Bulletin of Applied Botany, Genetics and Plant Breeding. 1978;62(1):3-35. [in Russian]

9. Burgos G., Salas E., Amoros W., Auqui M., Muñoa L., Kimura M. et al. Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. Journal of Food Composition and Analysis. 2009;22(6):503-508. DOI: 10.1016/j.jfca.2008.08.008

10. Bykova I.V., Shmakov N.A., Afonnikov D.A., Kochetov A.V., Khlestkina E.K. Achievements and prospects of applying high-throughput sequencing techniques to potato genetics and breeding. Vavilov Journal of Genetics and Breeding. 2017;21(1):96-103. [in Russian] DOI: 10.18699/VJ17.227

11. Camacho Villa T.C., Maxted N., Scholten M., Ford-Lloyd B. Defining and identifying crop landraces. Plant Genetic Resources. 2005;3(3):373-384. DOI: 10.1079/PGR200591

12. Correll D.S. The potato and its wild relatives: Section Tuberarium of the genus Solanum. Renner, Texas: Texas Research Foundation; 1962. Cuesta Subía X. Potato quality traits: variation and genetics in Ecuadorian potato landraces [dissertation]. Wageningen: Wageningen University; 2013.

13. De Haan S., Rodrigues F. Potato origin and production. In: J. Singh, L. Kaur (eds). Advances in Potato Chemistry and Technology. 2nd ed. San Diego: Elsevier Science Publishing Co. Inc.; 2016. p.1-32. DOI: 10.1016/B978-0-12-800002-1.00001-7

14. Ellis D., Salas A., Chavez O., Gomez R., Anglin N. Ex situ conservation of potato [Solanum section Petota (Solanaceae)] genetic resources in genebanks. In: H. Campos, O. Ortiz (eds). The Potato Crop. Its Agricultural, Nutritional and Social Contribution to Humankind. Cham, Switzerland: Springer International Publishing; 2020. p.109-138. DOI: 10.1007/978-3-030-28683-5_4

15. FAO. The Second Report on the World’s Plant Genetic Resources for Food and Agriculture. Rome, Italy: FAO; 2010. Available from: http://www.fao.org/3/i1500e/i1500e00.htm [accessed May 06, 2020].

16. Gavrilenko T., Antonova O., Shuvalova A., Krylova E., Alpatyeva N., Spooner D.M. et al. Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genetic Resources and Crop Evolution. 2013;60(7):1997-2015. DOI: 10.1007/s10722-013-9968-1

17. Gavrilenko T.A., Shvachko N.A., Volkova N.N., Ukhatova Yu.V. A modified droplet vitrification method for cryopreservation of shoot tips from in vitro potato plants. Vavilov Journal of Genetics and Breeding. 2019;23(4):422-429. [in Russian] DOI: 10.18699/VJ19.505

18. Gorbatenko L.E. Potato species of South America: ecology, geography, introduction, systematics, and breeding significance. (Vidy kartofelya Yuzhnoy Ameriki: ekologiya, geografiya, introduktsiya, sistematika, selektsionnaya znachimost). St. Petersburg: VIR; 2006. [in Russian]

19. Hardigan M.A., Laimbeer F.P.E., Newton L., Crisovan E., Hamilton J.P., Vaillancourt B. et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. PNAS. 2017;114(46).E9999-E10008. DOI: 10.1073/pnas.1714380114

20. Harlan J.R., de Wet J.M.J. Toward a rational classification of cultivated plants. Taxon. 1971;20(4):509-517. DOI: 10.2307/1218252

21. Hawkes J.G. The potato: Evolution, biodiversity and genetic resources. London: Belhaven Press, 1990.

22. Hawkes J.G., Hjerting J.P. The potatoes of Argentina, Brazil, Paraguay and Uruguay. Biosystematic Study. Oxford: Clarendon Press; 1969.

23. Hawkes J.G., Hjerting J.P. The potatoes of Bolivia: Their breeding value and evolutionary relationships. Oxford; Clarendon Press; 1989.

24. Huamán Z., Hawkes J.G., Rowe P.R. Solanum ajanhuiri: An important diploid potato cultivated in the andean altiplano. Economic Botany. 1980;34(4):335-343. DOI: 10.1007/BF02858307

25. Jacobs M.M.J., Smulders M.J.M., van den Berg R.G., Vosman B. What’s in a name; Genetic structure in Solanum section Petota studied using population-genetic tools. BMC Evolutionary Biology. 2011;11:42. DOI: 10.1186/1471-2148-11-42

26. Jia J., Li H., Zhang X., Li Z., Qiu L. Genomics-based plant germplasm research (GPGR). The Crop Journal. 2017;5(2):166-174. DOI: 10.1016/j.cj.2016.10.006

27. Juyó D., Sarmiento F., Álvarez M., Brochero H., Gebhardt C., Mosquera T. Genetic diversity and population structure in diploid potatoes of Solanum tuberosum group Phureja. Crop Science. 2015;55(2):760-769. DOI: 10.2135/cropsci2014.07.0524

28. Kiru S.D., Bavyko N.F., Palekha S.V., Evstratova L.P. Catalogue of the VIR global collection. Issue 738. Cultivated potato species. St. Petersburg: VIR; 2002. [in Russian]

29. Kiru S.D., Palekha S.V., Makovskaya S.A., Patrikeeva M.V., Evstratova L.P. South American cultivated potato species as gene sources in breeding for resistance to pathogens. (Yuzhnoamerikanskiye kulturnye vidy kartofelya kak geneticheskiy istochnik dlya selektsii na ustoychivost k patogenam). Plant Protection News. 2003;2:48-53. [in Russian]

30. Kiru S.D., Rogozina E.V. Mobilization, conservation and study of cultivated and wild potato genetic resources. Vavilov Journal of Genetics and Breeding. 2017;21(1):7-15. [in Russian] DOI: 10.18699/VJ17.219

31. Khlestkina E.K., Shumny V.K., Kolchanov N.A. Markerassisted selection and examples of its application in world potato growing. Achievements of Science and Technology of AIC. 2016;30(10):5-8. [in Russian]

32. Kochetov A.V., Glagoleva A.Y., Strygina K.V., Khlestkina E.K., Gerasimova S.V., Ibragimova S.M. et al. Differential expression of NBS-LRR-encoding genes in the root transcriptomes of two Solanum phureja genotypes with contrasting resistance to Globodera rostochiensis. BMC Plant Biology. 2017;17 Suppl 2:251. DOI: 10.1186/s12870-017-1193-1

33. Kostina L.I., Kosareva O.S. Genealogy of domestic potato varieties. (Genealogiya otechestvennykh sortov kartofelya). St. Petersburg: VIR; 2017. [in Russian]

34. Lekhnovich V.S. Cultivated potato species (Kulturnye vidy kartofelya). In: P.M. Zhukovsky, S.M. Bukasov (eds). Flora of Cultivated Plants. Vol. 9. Potato. Leningrad: Kolos; 1971. p.41-304. [in Russian]

35. Leisner C.P., Hamilton J.P., Crisovan E., Manrique-Car pintero N.C., Marand A.P., Newton L. et al., Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. The Plant Journal. 2018;94(3):562-570. DOI: 10.1111/tpj.13857

36. Li Y., Colleoni C., Zhang J., Liang Q., Hu Y., Ruess H. et al. Genomic analyses yield markers for identifying agronomically important genes in potato. Molecular Plant. 2018;11(3):473-484. DOI: 10.1016/j.molp.2018.01.009

37. Monteros-Altamirano A., Buitrón-Bustamante J., OrbeVergara K., Cuesta-Subía X. Ecuadorian potato landraces: traditional names and genetic identity. Revista Fitotecnia Mexicana. 2017;40(4):481-489.

38. Morante M.C. Potato production system in the Andean region of Bolivia: Modern seed potato production, the use of agricultural technology, and genetic erosion. Research and Reviews: Journal of Agriculture and Allied Sciences. 2019;8(1):86-95.

39. Ochoa C.M. The potatoes of South America: Peru, Part 1. The wild species. Lima, Peru: CIP; 2004.

40. Ovchinnikova А., Krylova E., Gavrilenko T., Smekalova T., Zhuk M., Knapp S., Spooner D. Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). Botanical Journal of the Linnean Society. 2011;165(2):107-155. DOI: 10.1111/j.1095-8339.2010.01107.x

41. Ross H. Potato breeding: Problems and perspectives. Journal of Plant Breeding. 1986; Suppl 13:132.

42. Spooner D.M., Ghislain M., Simon R., Jansky S.H., Gav rilenko T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. The Botanical Review. 2014;80(4):283-383. DOI: 10.1007/s12229-014-9146-y

43. Spooner D.M., McLean K., Ramsay G., Waugh R., Bryan G.J. A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. PNAS. 2005;102(41):14694-14699. DOI: 10.1073/pnas.0507400102

44. Vavilov N.I. Botanical and geographical principles of breeding (Botaniko-geograficheskiye osnovy selektsii). In: Theoretical Principles of Plant Breeding. Vol. 1 (Teoreticheskiye osnovy selektsii. T. 1). Moscow; Leningrad; 1935. [in Russian]

45. Vincent H., Wiersema J., Kell S., Fielder H., Dobbie S., Castañeda-Álvarez N.P. et al. A prioritized crop wild relative inventory to help underpin global food security. Biological Conservation. 2013;167:265-275. DOI: 10.1016/j.biocon.2013.08.011

46. Wambugu P.W., Ndjiondjop M.N., Henry R.J. Role of genomics in promoting the utilization of plant genetic resources in genebanks. Briefings in Functional Genomics. 2018;17(3):198-206. DOI: 10.1093/bfgp/ely014

47. Xu X., Pan S., Cheng S., Zhang B., Mu D., Ni P. et al. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475(7355):189-195. DOI: 10.1038/nature10158

48. Zykin A.G. The potato of Bolivia. Bulletin of Applied Botany, Genetics and Plant Breeding. 1973;50(3):241-267. [in Russian]


Review

For citations:


Rogozina E.V., Gurina A.A. Composition of the collection of primitive cultivated species within the Solanum L. section Petota Dumort. and contemporary trends in their research. Proceedings on applied botany, genetics and breeding. 2020;181(3):190-202. (In Russ.) https://doi.org/10.30901/2227-8834-2020-3-190-202

Views: 819


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)