Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Comparative analysis of the DNA isolated from thyme leaves using different methods

https://doi.org/10.30901/2227-8834-2020-3-155-162

Abstract

Background. The base for a molecular analysis is DNA of high quality. For DNA isolation, different kits or classical methods are used. For mass analysis, isolation with kits is a very expensive process. So, the objective of our investigation was to find a cheap method for high-quality DNA isolation from leaves of various thyme cultivars.

Materials and methods. Leaves cut from thyme accessions (Thymus mastichina L. cv. ‘Svetliachok’, T. striatus Vahl. cv. ‘Jubileiniy’, T. vulgaris L. cv. ‘Fantasia’, and T. vulgaris cv. ‘Jalos’.) maintained ex situ in the collection of the Nikita Botanical Gardens were used as the material for the analysis. Light microscopy was used to study leaf anatomy and localize essential oil on leaf cross sections. Essential oil was extracted on Ginsberg devices, and phenolic content was measured with The Folin–Ciocâlteu reagent (FCR). Commercial kits (DiamondDNATM, PureLink® Plant Total DNA Purification Kit) and classical methods (CTAB, CTAB with 2% polyvinylpyrrolidone) were used for DNA isolation. DNA quality was evaluated spectrophotometrically, with electrophoresis (horizontal, automated system Agilent 4200 TapeStation) and PCR.

Results. The analysis showed that the leaf blade mesophyll of four thyme cultivars had inclusions with essential oil. The content of essential oil and phenolic compounds was measured biochemically. Since the plants were characterized by the presence of secondary metabolites, DNA was isolated by different methods. Spectrophotometry demonstrated that the classical CTAB method and CTAB with 2% PVP provided the best results. Using an automated electrophoresis system, the presence of high-molecularweight DNA (more than 52000 bp) in significant amounts was detected in the samples isolated with DiamondDNATM kit and CTAB + 2% PVP.

Conclusion. Among the tested kits and methods, CTAB + 2% PVP provided thyme DNA suitable for PCR and, presumably, for genome library preparation. The low cost of reagents for this technique makes it applicable for future mass analysis of plant material. 

About the Authors

I. V. Bulavin
http://nikitasad.ru/science/bulavin-ilya-vladimirovich/
The Nikita Botanical Gardens – National Scientific Center of the RAS
Russian Federation
52 Nikitsky Spusk, Nikita, Yalta, Republic of Crimea 298648


O. A. Grebennikova
http://nikitasad.ru/science/grebennikova-oksana-anatolevna/
The Nikita Botanical Gardens – National Scientific Center of the RAS
Russian Federation
52 Nikitsky Spusk, Nikita, Yalta, Republic of Crimea 298648


V. A. Brailko
http://nikitasad.ru/science/brailko-valentina-anatolevna/
The Nikita Botanical Gardens – National Scientific Center of the RAS
Russian Federation
52 Nikitsky Spusk, Nikita, Yalta, Republic of Crimea 298648


S. A. Feskov
http://nikitasad.ru/science/feskov-sergej-aleksandrovich/
The Nikita Botanical Gardens – National Scientific Center of the RAS
Russian Federation
52 Nikitsky Spusk, Nikita, Yalta, Republic of Crimea 298648


I. V. Mitrofanova
http://nikitasad.ru/science/mitrofanova-irina-vyacheslavovna-2/
The Nikita Botanical Gardens – National Scientific Center of the RAS
Russian Federation
52 Nikitsky Spusk, Nikita, Yalta, Republic of Crimea 298648


References

1. Afsharzadeh S., Abbasi S. An efficient and simple CTAB based method for total genomic DNA isolation from low amounts of aquatic plants leaves with a high level of secondary metabolites. Progress in Biological Sciences. 2016;6(1):95-106. DOI: 10.22059/PBS.2016.59012

2. Arruda S.R., Pereira D.G., Silva-Castro M.M., Brito M.G., Waldschmidt A.M. An optimized protocol for DNA extraction in plants with a high content of secondary metabolites, based on leaves of Mimosa tenuiflora (Willd.) Poir. (Leguminosae). Genetics and Molecular Research. 2017;16(3):1-9. DOI: 10.4238/gmr16039063

3. Bulavin I.V., Brailko V.A., Grebennikova O.A., Andreev M.S., Krivenko O.V., Mitrofanova I.V. Efficiency evaluation of commercial kits for DNA isolation from lavandine (Lavandula × intermedia Emeric ex Loisel.). Pomiculture and Small Fruits Culture in Russia. 2019a;59:286- 293. [in Russian] DOI: 10.31676/2073-4948-2019-59-286-293

4. Bulavin I.V., Brailko V.A., Mitrofanova I.V. Essential oil histochemical staining in the lavandin leaves and isolated DNA quality regard to anatomy. Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry. 2019b;5(71):3-11. [in Russian]

5. Dhifi W., Bellili S., Jazi S., Bahloul N., Mnif W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines. 2016;3(4):25. DOI: 10.3390/medicines3040025

6. Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 1987;19(1):11-15.

7. Fu Z.Y., Song J.C., Jameson P.E. A rapid and cost effective protocol for plant genomic DNA isolation using regenerated silica columns in combination with CTAB extraction. Journal of Integrative Agriculture. 2017;16(8):1682-1688. DOI: 10.1016/S2095-3119(16)61534-4

8. Gerzhikova V.G. Methods of technochemical control in winemaking (Metody tekhnokhimicheskogo kontrolya v vinodelii). Simferopol; 2002. [in Russian]

9. Hills P.N., van Staden J. An improved DNA extraction procedure for plant tissues with a high phenolic content. South African Journal of Botany. 2002;68(4):549-550. DOI: 10.1016/S0254-6299(15)30384-7

10. Isikov V.P., Rabotyagov V.D., Hlypenko L.A., Logvinenko I.E., Logvinenko L.A., Kut’ko S.P., Bakova N.N., Marko N.V. Introduction and breeding of aromatic and medicinal crops: methodological and technical aspects (Introduktsiya i selektsiya aromaticheskikh i lekarstvennykh kultur: metodologicheskiye i metodicheskiye aspekty). Yalta; 2009. [in Russian]

11. Kanauja S.P.S., Shasany A.K., Darokar M.P, Sushil K. Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Molecular Biology Reporter. 1999;17(1):74. DOI: 10.1023/A:1007528101452

12. Karomatov I.D., Asadova S.I. Herb thyme ordinary. Biologiya i integrativnaya meditsina = Biology and Integrative Medicine. 2017;11:168-178. [in Russian]

13. Logvinenko L.A. Myrtus communis L. in the conditions of the southern coast of Crimea. Agrarian Bulletin of the Urals. 2017;9(163):16-23. [in Russian]

14. Lucas M.S., Carvalho C.S., Hypolito G.B.H., Côrtes M.C. Optimized protocol to isolate high quality genomic DNA from different tissues of a palm species. Hoehnea. 2019;46(2):e942018. DOI: 10.1590/2236-8906-94/2018

15. Marko N.V., Logvinenko L.A., Shevchuk O.M., Feskov S.A. Annotated catalog of aromatic and medicinal plants of the Nikita Botanical Gardens collection (Annotirovanny katalog aromaticheskikh i lekarstvennykh rasteniy kollektsii Nikitskogo botanicheskogo sada). Simferopol; 2018. [in Russian]

16. Naeem A., Abbas T., Ali T.M., Hasnain A. Essential oils: Brief background and uses. Annals of Short Reports. 2018;1(1):1006.

17. Pashtetskiy V.S., Verdysh M.V, Popova A.A., Kolesnikova A.V. Analysis of essential oils markets and state of essential production in the Russian Federation. Construction Economic and Environmental Management. 2017;4(65):49- 54. [in Russian]

18. Plugatar Yu.V., Shevchuk O.M. Results and directions of the breeding of aromatic and medicinal plants in the Nikitsky Botanical Gardens. Bulletin of the State Nikita Botanical Gardens. 2019;130:9-17. [in Russian] DOI: 10/25684/NBG.boolt.130.2019.01

19. Rehman R., Hanif M.A., Mushtaq Z., Mochona B., Qi X. Biosynthetic factories of essential oils: the aromatic plants. Natural Products Chemistry and Research. 2016;4(4):227. DOI: 10.4172/2329-6836.1000227

20. Rogers S.O., Bendich A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology. 1985;5(2):69-76. DOI: 10.1007/BF00020088

21. Sá O., Pereira J.A., Baptista P. Optimization of DNA extraction for RAPD and ISSR analysis of Arbutus unedo L. leaves. International Journal of Molecular Sciences. 2011;12(6): 4156-4164. DOI: 10.3390/ijms12064156

22. Sharifi-Rad J., Sureda A., Tenore G.C., Daglia M., SharifiRad M., Valussi M. et al. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules. 2017;22(1):70. DOI: 10.3390/molecules22010070

23. Tiwari S., Singh Tomar R.S., Tripathi M.K., Ahuja A. Modified protocol for plant genomic DNA isolation. Indian Research Journal of Genetics and Biotechnology. 2017;9(4):478-485.

24. Vega-Vela N.E., Chacón-Sánchez M.I. Isolation of high-quality DNA in 16 aromatic and medicinal Colombian species using silica-based extraction columns. Agronomía Colombiana. 2011;29(3):349-357.


Review

For citations:


Bulavin I.V., Grebennikova O.A., Brailko V.A., Feskov S.A., Mitrofanova I.V. Comparative analysis of the DNA isolated from thyme leaves using different methods. Proceedings on applied botany, genetics and breeding. 2020;181(3):155-162. https://doi.org/10.30901/2227-8834-2020-3-155-162

Views: 854


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)