Efficiency of SSR and PawS markers for evaluation of genetic polymorphism among red clover (Trifolium pratense L.) cultivars
https://doi.org/10.30901/2227-8834-2020-3-100-109
Abstract
Background. Identification of crop varieties is presently one of the most important aspects due a significant annual increase in the number of newly developed cultivars. Application of molecular markers makes it possible to identify cultivars and secure protection of plant breeders’ rights. Marker techniques based on SSR loci and PawS markers were evaluated for their efficiency in revealing the DNA polymorphism in Russian red clover cultivars, and the research results are presented in this publication.
Materials and Methods. The total genome DNA was extracted by a modified SDS method from 30 seedlings per each cultivar. Nine simple sequence repeats (SSR) and 4 PawS markers were used for genotyping. The basic genetic diversity parameters were measured and analyzed using the software resources GelAnalyzer 2010а, MStools v.3, and Statistica 7.0.
Results and conclusion. The mean level of intervarietal DNA polymorphism in red clover was 38.6%. Cultivar-specific amplicons were obtained for 4 accessions (cvs. ‘Trifon’, ‘Topaz’, ‘Trio’ and ‘Mars’) with SSR loci RCS1307 and RCS3095. These loci were found appropriate for identification and certification of such cultivars. The tested PawS markers (individually and in combinations) proved non-informative for the analysis of intervarietal DNA polymorphism in red clover. The only primer pair PawS5+PawS16 generated reproducible PCR products, but unique amplicons were absent in the DNA profiles. The data obtained in this study may be helpful for further identification and certification of Russian red clover cultivars and promising breeding materials.
Keywords
About the Authors
I. A. KlimenkoFederal Williams Research Center of Forage Production and Agroecology
Russian Federation
Bldg. 1, Scientific Campus, Lobnya, Moscow Province 141055
S. I. Kostenko
Federal Williams Research Center of Forage Production and Agroecology
Russian Federation
Bldg. 1, Scientific Campus, Lobnya, Moscow Province 141055
Yu. M. Mavlyutov
Federal Williams Research Center of Forage Production and Agroecology
Russian Federation
Bldg. 1, Scientific Campus, Lobnya, Moscow Province 141055
A. O. Shamustakimova
Federal Williams Research Center of Forage Production and Agroecology
Russian Federation
Bldg. 1, Scientific Campus, Lobnya, Moscow Province 141055
References
1. Berzina I., Zhuk A., Veinberga I., Rasha I., Rungis D.D. Genetic fingerprinting of Latvian red clover (Trifolium pratense L.) varieties using simple sequence repeat (SSR) markers: comparisons over time and space. Latvian Journal of Agronomy. 2008;11:28-32.
2. Bezlepkina E.V., Guliaeva A.A., Galkova A.A. The PawS5 retrotransposon based genotyping of apricot (Prunus armenica L.) varieties from collection of the Russian Research Institute of Fruit Crop Breeding (VNIISPK) Contemporary Horticulture. 2019;3:9-15. [in Russian] DOI: 10.24411/2312-6701-2019-10302
3. Biryukova V.A. Assessment of the genetic diversity of potato varieties and related Solanum species by analyzing moderately repetitive genome sequences (Otsenka geneticheskogo raznoobraziya sortov kartofelya i rodstvennykh vidov Solanum metodom analiza umerenno povtoryayushchikhsya posledovatelnostey genoma) [dissertation]. Moscow; 2002. [in Russian]
4. Boronnikova S.V. Molecular marking and genetic certification resource and rare species of plants for the purpose of optimization of preservation of their genofunds. Agrarian Bulletin of the Urals. 2009;2(56):57-59. [in Russian]
5. Brik A.F., Kalendar R.N., Stratula O.P, Sivolap Yu.M. IRAP and REMAP analysis barley varieties from Odessa collection (IRAP- i REMAP-analiz sortov yachmenya Odesskoy selektsii). Cytology and Genetics. 2006;3:24-33. [in Russian]
6. Dellaporta S.L., Wood J., Hicks J.B. A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter. 1983;1(4):19-21. DOI: 10.1007/BF02712670
7. Dias P.M.B., Julier B., Sampoux J.P., Barre P., Dall’Agnol M. Genetic diversity in red clover (Trifolium pratense L.) revealed by morphological and microsatellite (SSR) markers. Euphytica. 2008;160(2):189-205. DOI: 10.1007/s10681-007-9534-z
8. Don R.H., Cox P.T., Wainwright B.J., Baker K., Mattick J.S. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Research. 1991;19(14):4008. DOI: 10.1093/nar/19.14.4008
9. Dugar Y.N., Popov V.N. Genetic structure and diversity of Ukrainian red clover cultivars revealed by microsatellite markers. Open Journal of Genetics. 2013;3:235-242. DOI: 10.4236/ojgen.2013.34026
10. Fedulova T.P. Fedorin D.N. Genetic diversity analysis sort type root beet (Beta vulgaris L.) based on DNA-marker. Auditorium: Electronic Scientific Journal of Kursk State University. 2014;4(4). [in Russian]. URL: https://cyberleninka.ru/article/n/analiz-geneticheskogo-raznoobraziya-sortotipov-korneplodnoy-svekly-beta-vulgaris-l-na-osnovednk-markerov [дата обращения: 10.06.2020].
11. Gao D., Chen J., Chen M., Meyers B.C., Jackson S. A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes. PLoS ONE. 2012;7(2):e32010. DOI: 10.1371/journal.pone.0032010
12. Gilbert J.E., Lewis R.V., Wilkinson M.J., Caligari P.D.S. Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theoretical and Applied Genetics. 1999;98(6-7):1125-1131. DOI: 10.1007/s001220051176
13. Glazko V.I., El’kina M.A., Glazko T.T. Homologous nucleotide sequences of the flank of retrotranspozon PawS5 of R173 family in animal and plant genomes. Agricultural Biology. 2012;4:36-41. [in Russian]. DOI: 10.15389/agrobiology.2012.4.36rus
14. Gupta M., Sharma V., Singh S.K., Chahota R.K., Sharma T.R. Analysis of genetic diversity and structure in a genebank collection of red clover (Trifolium pratense L.) using SSR markers. Plant Genetic Resources. 2016;15(4):376-379. DOI: 10.1017/S1479262116000034
15. Herrmann D., Boller B., Widmer F., Kölliker R. Optimization of bulked AFLP analysis and its application for exploring diversity of natural and cultivated populations of red clover. Genome. 2005;48(3):474-486. DOI: 10.1139/g05-011
16. Karim K., Rawda A., Hatem C.M. Genetic diversity in local Tunisian barley based on RAPD and SSR analysis. Biological Diversity and Conservation. 2009;2(1):27-35.
17. Khavkin E.E. Plant molecular breeding: DNA technologies of creating new crop varieties. Agricultural Biology. 2003;38(3):26-41. [in Russian].
18. Khlestkina E.K. Molecular markers in genetic studies and breeding. Vavilov Journal of Genetics and Breeding. 2013;17(4/2):1044-1054. [in Russian]
19. Khlestkina E.K. Molecular methods of the analysis of the structural and functional organization of genes and genomes in higher plants. Vavilov Journal of Genetics and Breeding. 2011;15(4):757-768. [in Russian]
20. Klimenko I.A., Kozlov N.N. Assessment of red clover breeding samples on the base of microsatellite analysis. In: Multifunctional adaptive fodder production: Collection of scientific papers. Issue 19(67). (Mnogofunktsionalnoye adaptivnoye kormoproizvodstvo: sbornik nauchnykh trudov. Vypusk 19(67)). Moscow; 2018. [in Russian]
21. Klimenko I.A., Shamustakimova A.O., Kapustina N.V., Makarenkov M.A. Microsatellite genotyping of red clover and alfalfa varieties of the Williams Forage Crops Research Institute breeding (Mikrosatellitnoye genotipirovaniye sortov klevera lugovogo i lutserny VNII kormov im. V.R. Vilyamsa). Aktualnaya biotekhnologiya = Actual Biotechnology. 2019;3(30):180-182. [in Russian]
22. Kölliker R., Hermann D., Boller B., Widmer F. Swiss Mattenklee landraces, a distinct and diverse genetic resource of red clover (Trifolium pratense L.). Theoretical and Applied Genetics. 2003;107:306-315.
23. Kölliker R., Jones E.S., Jahufer M.Z.Z., Forster J.W. Bulked AFLP analysis for the assessment of genetic diversity in white clover (Trifolium repens L.). Euphytica. 2001;121:305-315.
24. Kongkiatngam P., Waterway M.J., Fortin M.G., Coulman B.E. Genetic variation within and between two cultivars of red clover (Trifolium pratense L.): comparisons of morphological, isozyme, and RAPD markers. Euphytica. 1995:84:237-246. DOI: 10.1007/BF01681816
25. Korir N.K., Han J., Shangguan L., Wang C., Kayesh E., Zhang Y. et al. Plant variety and cultivar identification: advances and prospects. Critical Reviews in Biotechnology. 2012;33(2):111-125. DOI: 10.3109/07388551.2012.675314
26. Kumar A., Bennetzen J.L. Plant retrotransposons. Annual Review of Genetics. 1999;33:479-532.
27. Kumar A., Hirochika H. Application of retrotransposons as genetic tools in plant biology. Trends in Plant Science. 2001;6(3):127-134. DOI: 10.1016/S1360-1385(00)01860-4
28. Lazar I., Zwecker-Lazar I., Lazar R.H. GelAnalyzer 2010a: Freeware 1D gel electrophoresis image analysis software. ScienceOpen, Inc.; 2010.
29. Liu S., Feuerstein U., Luesink W., Schulze S., Asp T., Studer B. et al. DArT, SNP, and SSR analyses of genetic diversity in Lolium perenne L. using bulk sampling. BMC Genetics. 2018;19(1):10. DOI: 10.1186/s12863-017-0589-0
30. Michelmore R.W., Paran I., Kesseli R.V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS. 1991,88(21):9828-9832. DOI: 10.1073/pnas.88.21.9828
31. Novoselov M.Y. Red clover (Trifolium pratense L.) (Klever lugovoy [Trifolium pratense L.]). In: The basic species and varieties of fodder crops (Osnovnye vidy i sorta kormovykh kultur). Moscow: Nauka; 2015. p.26-30. [in Russian]
32. Park S. MStools v. 3 (Excel Spreadsheet Toolkit for Data Conversion). Dublin: Trinity College; 2001. Radinovic I., Vasiljevic S., Brankovic G., Salem-Ahsyee R., Momirovic U., Perovic D. et al. Molecular characterization of red clover genotypes utilizing microsatellite markers. Chilean Journal of Agricultural Research. 2017;77(1):41-47. DOI: 10.4067/S0718-58392017000100005
33. Ramazanova S.A., Guchetl C.Z., Chelyustnikova T.A., Antonova T.S. Identification of soybean cultivars of Russian breeding on the basis of DNA SSR-loci analysis. Oil Crops. Scientific and Technical Bulletin of VNIIMK. 2008;2(139):56-58. [in Russian]
34. Rogowsky P.M., Shepherd K.W., Langridge P. Polymerase chain reaction based mapping of rye involving repeated DNA sequences. Genome. 1992;35(4):621-626. DOI: 10.1139/g92-093
35. Sato S., Isobe S., Asamizu E., Ohmido N., Kataoka R., Nakamura Y. et al. Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.). DNA Research. 2005;12(5):301-364. DOI: 10.1093/dnares/dsi018
36. Schulman A.H. Molecular markers to assess genetic diversity. Euphytica. 2007;158:313-321. DOI: 10.1007/s10681-006-9282-5
37. Sokal R.R., Michener C.D. A statistical methods for evaluating relationships. University of Kansas Science Bulletin. 1958;38:1409-1448.
38. Tam S.M., Mhiri C., Vogelaar A., Kerkveld M., Pearce S.R., Grandbastien M.A. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theoretical and Applied Genetics. 2005;110(5):819–831. DOI: 10.1007/s00122-004-1837-z
39. Tautz D., Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research. 1984;12(10):4127-4138. DOI: 10.1093/nar/12.10.4127
40. Vymyslicky T., Smarda P., Pelikan J., Cholastova T., Nedelnik J., Moravcova H. et al. Evaluation of the Czech core collection of Trifolium pratense, including morphological, molecular and phytopathological data. African Journal of Biotechnology. 2012;11(15):3583-3595. DOI: 10.5897/AJB11.3085
41. Zaytsev V.S., Khavkin E.E. Identification of plant genotypes using PCR analysis of repeated DNA sequences R173 family. (Identifikatsiya genotipov rasteniy s pomoshchyu PTsR-analiza rasseyannykh povtoryayushchikhsya posledovatelnostey R173). Russian Agricultural Sciences. 2001;2:3-5. [in Russian]
42.
Review
For citations:
Klimenko I.A., Kostenko S.I., Mavlyutov Yu.M., Shamustakimova A.O. Efficiency of SSR and PawS markers for evaluation of genetic polymorphism among red clover (Trifolium pratense L.) cultivars. Proceedings on applied botany, genetics and breeding. 2020;181(3):100-109. (In Russ.) https://doi.org/10.30901/2227-8834-2020-3-100-109