A study of the genetic diversity in the world soybean collection using microsatellite markers associated with fungal disease resistance
https://doi.org/10.30901/2227-8834-2020-3-81-90
Abstract
Background. Soybean (Glycine max (L.) Merr.) gradually becomes one of the leading legume crops in Kazakhstan. The area under soybeans in the country has been increasing annually and requires the development of adapted cultivars with a higher yield, improved quality characters, and resistance to emerging fungal diseases. The enlargement of the crop’s gene pool also suggests the need to study and document local soybean accessions to meet the standards of the available world soybean collection by using reliable and informative types of DNA markers.
Materials and methods. In this study, the soybean collection consisting of 288 accessions from different countries, including 36 cultivars and promising lines from Kazakhstan, was studied. The molecular genetic analysis was performed using nine polymorphic SSR (simple sequence repeats) markers, seven of which (Satt244, Satt565, Satt038, Satt309, Satt371, Satt570 and Sat_308) were associated with resistance to three main fungal diseases of soybean – frogeye leaf spot, fusarium root rot, and purple seed stain.
Results. The average PIC (polymorphism information content) value of the analyzed SSR markers constituted 0.66 ± 0.07, confirming their highlevel polymorphism. The principal coordinate analysis suggested that the local accessions were genetically most close to the accessions from East Asia. As the collection showed a robust resistance to three studied fungal diseases in Almaty Region during 2018–2019, the distribution of the studied SSR markers in the population was not significantly associated with resistance to the analyzed diseases under field conditions.
Conclusion. SSR genotyping of the soybean collection helped to identify accessions that potentially possess resistance-associated alleles of fungal disease resistance genes. The data obtained can be further used for the development of DNA documentation and the breeding the promising cultivars and lines of soybean.
About the Authors
A. K. ZatybekovInstitute of Plant Biology and Biotechnology
Kazakhstan
45 Timiryazev St., Almaty 050040
Y. T. Turuspekov
Institute of Plant Biology and Biotechnology; Al-Farabi Kazakh National University
Kazakhstan
45 Timiryazev St., Almaty 050040;
71 Al-Farabi Ave., Almaty 050040
B. N. Doszhanova
Institute of Plant Biology and Biotechnology
Kazakhstan
45 Timiryazev St., Almaty 050040
S. I. Abugalieva
Institute of Plant Biology and Biotechnology; Al-Farabi Kazakh National University
Kazakhstan
45 Timiryazev St., Almaty 050040;
71 Al-Farabi Ave., Almaty 050040
References
1. Bisen A., Khare D., Nair P., Tripathi N. SSR analysis of 38 genotypes of soybean (Glycine max (L.) Merr.) genetic diversity in India. Physiolology and Molecular Biology of Plants. 2015;21(1):109-115. DOI: 10.1007/s12298-014-0269-8
2. Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic map in man using restriction fragment length polymorphisms. American Journal of Human Genetics. 1980;32(3):314-331.
3. Cregan P.B., Jarwik T., Bush A.L., Shoemaker R.C., Lark K.G., Kahler A.L. et al. An integrated genetic linkage map of the soybean genome. Crop Science. 1999;39:1464-1490.
4. Dellaporta S.L., Wood J., Hicks J.B. A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter. 1983;1(4):19-21. DOI: 10.1007/BF02712670
5. Ding J.J., Jiang C.L., Gu X., Yang X.H., Zhao H.H., Shen H.B. et al. Establishment of molecular ID of soybean varieties (lines) using SSR markers linked to resistance genes against Cercospora sojina. Acta Agronomica Sinica. 2012;38(12):2206-2216. DOI: 10.3724/SP.J.1006.2012.02206
6. Earl D.A., von Holdt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetic Resources. 2012;4(2):359-361. DOI: 10.1007/s12686-011-9548-7
7. Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology. 2005;14(8):2611- 2620. DOI: 10.1111/j.1365-294X.2005.02553.x
8. Garcia M.C., Torre M., Marina M.L., Laborda F., Rod riquez A.R. Composition and characterization of soyabean and related products. Critical Reviews in Food Science and Nutrition. 1997;37(4):361-391. DOI: 10.1080/10408399709527779
9. Ghorbanipour A., Rabiei B., Rahmanpour S., Khodaparast S.A. Association analysis of charcoal rot disease resistance in soybean. Plant Pathology Journal. 2019;35(3):189-199. DOI: 10.5423/PPJ.OA.12.2018.0283
10. Hnetkovsky N., Chang S.J.C., Doubler T.W., Gibson P.T., Lightfoot D.A. Genetic mapping of loci underlying field resistance to soybean sudden death syndrome (SDS). Crop Science. 1996;36(2):393-400. DOI: 10.2135/cropsci1996.0011183X003600020030x
11. Idrees M., Irshad M. Molecular markers in plants for analysis of genetic diversity: A review. European Academic Research. 2014;2(1):1513-1540.
12. Iqbal M.J., Meksem K., Njiti V.N., Kassem M.A., Lightfoot D.A. Microsatellite markers identify three additional quantitative trait loci for resistance to soybean sudden-death syndrome (SDS) in Essex ×
13. Forrest RILs. Theoretical and Applied Genetics. 2001;102:187-192. DOI: 10.1007/s001220051634
14. Jackson E.W., Feng C., Fenn P., Chen P. Genetic mapping of resistance to purple seed stain in PI 80837 soybean. Journal of Heredity. 2008;99(3):319-322. DOI: 10.1093/jhered/esm123
15. Korsakov N.I., Makasheva R.H., Adamova O.P. Methodology for studying the collection of legumes (Metodika izucheniya kollektsii zernobobovykh kultur). Leningrad: VIR; 1968. [in Russian]
16. Makulbekova A., Iskakov A., Kulkarni K.P., Song J.T., Lee J.D. Current status of future prospects of soybean production in Kazakhstan. Plant Breeding and Biotechnology. 2017;5:55-66. DOI: 10.9787/PBB.2017.5.2.55
17. Maui А.А., Sauranbaev B.N., Orazbaev К.I. Soybean pathogens in the south-east of Kazakhstan. Journal of Humanities and Administrative Sciences. 2016;5:20-26. DOI: 10.26449/JOSHAS.19
18. North Kazakhstan Region has started implementation of the Northern Soybean Program (V SKO nachata realizatsiya programmy “Severnaya Soya”). 2019. [in Russian] Available from: https://www.zakon.kz/4971028-v-skonachata-realizatsiya-programmy.html [accessed May 20, 2020].
19. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012;28(19):2537- 2539. DOI: 10.1093/bioinformatics/bts460
20. Rouf Mian M.A., Wang T., Phillips D.V., Alvernaz J., Boerma H.R. Molecular mapping of the Rcs3 gene for resistance to frogeye leaf spot in soybean. Crop Science. 1999;39(6):1687- 1691. DOI: 10.2135/cropsci1999.3961687x
21. Singh R.K., Bhatia V.S., Bhat K.V., Mohapatra T., Singh N.K., Bansal K.C. et al. SSR and AFLP based genetic diversity of soybean germplasm differing in photoperiod sensitivity. Genetics and Molecular Biology. 2010;33(2):319-324. DOI: 10.1590/s1415-47572010005000024
22. U.S. Department of Agriculture. An official website of the United States government. 2020. Available from: http:// usda.gov/ [accessed May 20, 2020].
23. Voorrips R.E. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity. 2002;93(1):77-78. DOI: 10.1093/jhered/93.1.77
24. Wang D., Diers B.W., Arelli P.R., Shoemaker R.C. Loci underlying resistance to Race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theoretical and Applied Genetics. 2001;103(4):561-566. DOI: 10.1007/pl00002910
25. Wang L.X., Guan R., Zhangxiong L., Chang R., Qiu L. Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Science. 2006;46(3):1032-1038. DOI: 10.2135/cropsci2005.0051
26. Wrather J.A., Anderson T.R., Arsyad D.M., Gai J., Ploper L.D., Porta-Puglia A. et al. Soybean disease loss estimates for the top 10 soybean producing countries in 1994. Plant Diseases. 1997;81(1):107-110. DOI: 10.1094/PDIS.1997.81.1.107
27. Zatybekov A., Abugalieva S., Didorenko S., Rsaliyev A., Turuspekov Y. GWAS of a soybean breeding collection from South East and South Kazakhstan for resistance to fungal diseases. Vavilov Journal of Genetics and Breeding. 2018;22(5):536-543. DOI: 10.18699/VJ18.392
28. Zatybekov A.K., Abugalieva S.I., Didorenko S.V., Tu rus pekov Y.K. Genetic bases of soybean resistance to fungal diseases (Geneticheskiye osnovy ustoychivosti soi k gribkovym boleznyam). Issledovaniya, rezultaty. KazNAU = Research, Results. KazNAU. 2017;1(73):128- 140. [in Russian]
29. Zatybekov A.K., Agibaev A.Z., Didorenko S.V., Abugalieva S.I., Turuspekov Y.K. Analysis of resistance to Septoria glycines in soybean world collection harvested in South-Eastern Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Agricultural Sciences. 2018;5(47):44-52. DOI: 10.32014/2018.2224-526X.6
30. Zhong C., Sun S., Yao L., Ding J., Duan C., Zhu Z. Fine mapping and identification of a novel Phytophthora root rot resistance locus RpsZS18 on chromosome 2 in soybean. Frontiers in Plant Science. 2018;9:44. DOI: 10.3389/fpls.2018.00044
Review
For citations:
Zatybekov A.K., Turuspekov Y.T., Doszhanova B.N., Abugalieva S.I. A study of the genetic diversity in the world soybean collection using microsatellite markers associated with fungal disease resistance. Proceedings on applied botany, genetics and breeding. 2020;181(3):81-90. https://doi.org/10.30901/2227-8834-2020-3-81-90