Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Morphological characterization of biominerals from five multicellular marine algae species

https://doi.org/10.30901/2227-8834-2020-2-117-122

Abstract

Silica biominerals are deposited as amorphous solid structures in plant cells and tissues, providing rigidity to different plant parts and assisting in defence. The shape and size of phytoliths are well established and serve as a useful tool in taxonomic analyses. For the first time we extracted and studied silica biominerals of five marine macroalgae, which we observed by light microscopy, scanning electron microscopy, and X-ray diffraction analysis (XRD). More than nine different morphotypes of phytoliths ranging from ≥ 10 to ≥ 350 μm in size were found. Some of them were phytoliths made of silica while others showed characteristics of different minerals of calcium. In our study, the “honeycomb” formations were only recorded in Laurencia tropica Yamada and pyramid tabular ones were found only in Tichocarpus crinitus (S.G. Gmelin) Ruprecht. The XRD analysis showed that they consisted of virgilite and gypsum substance, respectively. Silica phytoliths are intrinsic parts of the algae and their morphological characterization can provide the basis for palaeo-reconstruction and taxonomic investigation of brown and red algae in palaeontological studies of fossils where all organic matter has decayed.

About the Authors

A. M. Zakharenko
https://www.dvfu.ru/about/
Far Eastern Federal University
Russian Federation

8 Sukhanova St., Vladivostok 690091



M. A. Nawaz
https://www.dvfu.ru/about/
Far Eastern Federal University
Russian Federation

8 Sukhanova St., Vladivostok 690091



V. V. Chaika
https://www.dvfu.ru/about/
Far Eastern Federal University
Russian Federation

8 Sukhanova St., Vladivostok 690091



I. V. Zemchenko
https://www.dvfu.ru/about/
Far Eastern Federal University
Russian Federation

8 Sukhanova St., Vladivostok 690091



T. Yu. Orlova
Center for Toxic Algae and Algal Blooms Monitoring in Coastal Waters, A.V. Zhirmunsky Institute of Marine Biology
Russian Federation

17 Palchevskogo St., Vladivostok 690041



A. A. Begun
http://www.imb.dvo.ru/index.php/ru/
Center for Toxic Algae and Algal Blooms Monitoring in Coastal Waters, A.V. Zhirmunsky Institute of Marine Biology
Russian Federation

17 Palchevskogo St., Vladivostok 690041



R. V. Romashko
http://www.iacp.dvo.ru/structure/direction
Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

5 Radio St., Vladivostok 690041



A. N. Galkina
http://www.iacp.dvo.ru/user?id=191
Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

5 Radio St., Vladivostok 690041



A. A. Karabtsov
http://www.fegi.ru/fegi/rentgen/
Far Eastern Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

159 Pr. 100-letiya Vladivostoka, Vladivostok 690022



G. Chung
Chonnam National University
Korea, Republic of

Yeosu, 59626



K. S. Golokhvast
https://www.dvfu.ru/Academic_Council/the-composition-of-the-academic-council/holocuast-kirill-sergeevich/
Far Eastern Federal University; N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

8 Sukhanova St., Vladivostok 690091;

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



References

1. Ball T., Chandler-Ezell K., Dickau R., Duncan N., Hart T. C., Iriarte J. et al. Phytoliths as a tool for investigations of agricultural origins and dispersals around the world. Journal of Archaeological Science. 2016;68:32-45. DOI: 10.1016/j.jas.2015.08.010

2. Belous O.S., Titlyanova T.B., Titlyanov E.A. Marine plants of Trinity Bay and adjacent waters (Peter the Great Bay, Sea of Japan) (Morskiye rasteniya bukhty Troitsy i smezhnykh akvatoriy [Zaliv Petra Velikogo, Yaponskoye more]). Vladivoskok: Dalnauka; 2013. [in Russian]

3. Cabanes D., Weiner S., Shahack-Gross R. Stability of phytoliths in the archaeological record: A dissolution study of modern and fossil phytoliths. Journal of Archaeological Science. 2011;38(9):2480-2490. DOI: 10.1016/j.jas.2011.05.020

4. Çelekli A., Alslibi Z.A., Bozkurt H. Influence of incorporated Spirulina platensis on the growth of microflora and physicochemical properties of ayran as a functional food. Algal Research, 2019;44:101710.

5. Cuif J.-P., Dauphin Y., Sorauf J.E. Biominerals and fossils through time. Cambridge, UK: Cambridge University Press; 2010.

6. Currie H.A., Perry C.C. Silica in plants: biological, biochemical and chemical studies. Annals of Botany, 2007;100(7):1383-1389. DOI: 10.1093/aob/mcm247

7. Garbary D.J., Tarakhovskaya E.R. Marine macroalgae and associated flowering plants from the Keret Archipelago, White Sea, Russia. Algae. 2013;28(3):267-280. DOI: 10.4490/algae.2013.28.3.267

8. Garvie L.A. Decay-induced biomineralization of the saguaro cactus (Carnegiea gigantea). American Mineralogist. 2003;88(11-12):1879-1888. DOI: 10.2138/am-2003-11-1231

9. Golohvast K.S., Chaika V.V., Zakharenko A.M., Sergievich A.A., Zemchenko I.A., Artemenko A.F., Seryodkin I.V. Hexagonal Phytolithes from Red Alga Tichocarpus crinitus. Defect and Diffusion Forum. 2018;386:256-261. DOI: 10.4028/www.scientific.net/ddf.386.256

10. Golokhvast K., Kudryavkina O., Zakharenko A., Chaika V., Kholodov A., Seryodkin I. et al. Phytolithes (SiO2 Microparticles) of some multicellular brown algae. Der Pharma Chemica. 2015;7(11):307-311.

11. Hodso n M.J. The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology. Journal of Archaeological Science. 2016;68:62-69. DOI: 10.1016/j.jas.2015.09.002

12. Kumar i, I.S., Kumarasamy D. Studies on phytoliths in some marine plants. International Journal of Plant, Animal and Environmental Sciences. 2014;4:1-5.

13. Leliaert F., Coppejans E. Crystalline cell inclusions: A new diagnostic character in the Cladophorophyceae (Chlorophyta). Phycologia. 2004;43(2):189-203. DOI: 10.2216/i0031-8884-43-2-189.1

14. Madella M., Alexandré A., Ball T. International code for phytolith nomenclature 1.0. Annals of Botany. 2005;96(2):253-260. DOI: 10.1093/aob/mci172

15. Maggs C.A., Stegenga H. Red algal exotics on North Sea coasts. Helgoländer Meeresuntersuchungen. 1999;52(3-4):243.

16. Mizuta H., Yasui H. Protective function of silicon deposition in Saccharina japonica sporophytes (Phaeophyceae). Journal of Applied Phycology. 2012;24(5):1177-1182. DOI: 10.1007/s10811-011-9750-8

17. Morga n-Edel K.D., Boston P.J., Spilde M.N., Reynolds R.E. Phytoliths (plant-derived mineral bodies) as geobiological and climatic indicators in arid environments. New Mexico Geology. 2015;37(1):3-20.

18. Nawaz M.A., Zakharenko A.M., Zemchenko I.V., Haider M.S., Ali M.A., Imtiaz M. et al. Phytolith Formation in Plants: From Soil to Cell. Plants. 2019;8(8):E249. DOI: 10.3390/plants8080249

19. Parke r B.C. Occurrence of silica in brown and green algae. Canadian Journal of Botany. 1969;47(4):537-540. DOI: 10.1139/b69-073

20. Piper no D.R. A comparison and differentiation of phytoliths from maize and wild grasses: Use of morphological criteria. American Antiquity. 1984;49(2):361-383. DOI: 10.2307/280024

21. Piper no D.R. Phytoliths: A comprehensive guide for archaeologists and paleoecologists. Lanham, USA: Rowman Altamira Press; 2006.

22. Rao A ., Berg J.K., Kellermeier M., Gebauer D. Sweet on biomine ralization: effects of carbohydrates on the early stages of calcium carbonate crystallization. European Journal of Mineralogy. 2014;26(4):537-552. DOI: 10.1127/0935-1221/2014/0026-2379

23. Raven J., Giordano M. ‘Biomineralization by photosynthetic organisms: Evidence of coevolution of the organisms and their environment. Geobiology. 2009;7(2):140-154. DOI: 10.1111/j.1472-4669.2008.00181.x

24. Romanenko E.A., Romanenko P.A., Babenko L.M., Kosakovskaya I.V. Salt stress effects on growth and photosynthetic pigments’ content in algoculture of Acutodesmus dimorphus (Chlorophyta). International Journal on Algae. 2017;19(3):271-282. DOI: 10.1615/InterJAlgae.v19.i3.70

25. Saunders G. W., Hommersand M.H. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. American Journal of Botany. 2004;91(10):1494-1507. DOI: 10.3732/ajb.91.10.1494

26. Schie gl S., Stockhammer P., Scott C., Wadley L. A mineralogical and phytolith study of the Middle Stone Age hearths in Sibudu Cave, KwaZulu-Natal, South Africa: Sibudu Cave. South African Journal of Science, 2004;100(3-4):185-194.

27. Song Z., McGrouther K., Wang H. Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems. Earth-Science Reviews. 2016;158:19-30. DOI: 10.1016/j.earscirev.2016.04.007

28. Zuccarello G.C., Schidlo N., Mcivor L., Guiry M.D. A molecular re-examination of speciation in the intertidal red alga Mastocarpus stellatus (Gigartinales, Rhodophyta) in Europe. European Journal of Phycology. 2005;40(4):337-344. DOI: 10.1080/09670260500254743

29. Zurro D., García-Granero J.J., Lancelotti C., Madella M. Directions in current and future phytolith research. Journal of Archaeological Science. 2016;68:112-117. DOI: 10.1016/j.jas.2015.11.014


Review

For citations:


Zakharenko A.M., Nawaz M.A., Chaika V.V., Zemchenko I.V., Orlova T.Yu., Begun A.A., Romashko R.V., Galkina A.N., Karabtsov A.A., Chung G., Golokhvast K.S. Morphological characterization of biominerals from five multicellular marine algae species. Proceedings on applied botany, genetics and breeding. 2020;181(2):117-122. https://doi.org/10.30901/2227-8834-2020-2-117-122

Views: 967


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)