Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Biological peculiarities and cultivation of groundnut (a review)

https://doi.org/10.30901/2227-8834-2020-1-119-127

Abstract

Peanut is one of the most important crops in the Fabaceae Lindl. (Leguminosae L.) family. South America is considered to be the homeland of peanut, but now this crop is cultivated in America, Africa, Australia, Europe and Asia. The modern phylogenetic system of the genus Arachis L. includes 79 wild species and one cultivated species of common peanut (A. hypogaea L.). Diploid species contain 2n = 20 chromosomes of the A, B or D genome, tetraploids have A and B genomes. The А and В genomes are sequenced. Special biological features of all peanut varieties are the presence of chasmogamous and cleistogamous flowers and the development of pods only underground (geocarpy). Along with high requirements for improving the quality of oil and food products, much attention is paid to their safety: resistance to aflatoxin contamination and mitigation of allergenicity. Peanut cultivars vary in plant habit, shape and color of pods and seeds. Their growing season in Africa, Latin America and Asia is from 160 to 200 days, so early-ripening forms need to be selected for the south of the Russian Federation. Breeders from the Pustovoit Institute of Oil Crops (VNIIMK) have developed peanut cultivars with a yield of 2.0–3.3 t/ha and growing season duration of 115–120 days, adaptable to the environments of Krasnodar Territory. At present, there is no large-scale peanut production in Russia, nor any breeding efforts are underway. As for the world, along with conventional breeding practices (individual selection, intra- and interspecies crosses, etc.), peanut is widely involved in genomic studies. A number of cultivars highly resistant to pests, diseases and drought have been released. Over 15,000 peanut accessions are preserved in the world’s gene banks, including 1823 accessions in the collection of the Vavilov Institute (VIR). Utilization of the worldwide genetic resources of peanut and use of modern research technologies will contribute to the revival of peanut cultivation in Russia.

About the Authors

N. V. Kishlyan
https://www.vir.nw.ru/
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



V. D. Bemova
https://www.vir.nw.ru/aspirantura/bemova-viktoriya-dmitrievna/
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



T. V. Matveeva
https://bio.spbu.ru/staff/id93_tvm.php
St. Petersburg State University
Russian Federation

7–9 Universitetskaya Emb., St. Petersburg 19903



V. A. Gavrilova
https://www.vir.nw.ru/vir/podrazdeleniya-instituta/otdely/otdel-geneticheskih-resursov-maslichnyh-i-pryadilnyh-kultur/
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000; Department of Oil and Fiber Crops Genetic Resources



References

1. Badawi F. Sh. F, Biomy A.M.M., Desoky A.H. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Annals of Agricultural Sciences. 2011;56(1):17-25. DOI: org/10.1016/j.aoas.2011.05.005

2. Bakhareva S.N. Groundnuts in Western Africa (Arakhis Zapadnoy Afriki.) Bulletin of Applied Botany, Genetics and Plant Breeding. 1978;61(2):79-108. [in Russian]

3. Barker N.P. A Review and Survey of Basicarpy, Geocarpy, and Amphicarpy in the African and Madagascan Flora Annals of the Missouri Botanical Garden. 2005;92(4):445-462. Available from: https://www.jstor.org/stable/40035737 [accessed Dec. 20, 2019].

4. Bertioli D.J., Seijo G., Freitas F.O., Valls J.F.M., Leal-Bertioli S.C.M., Moretzsohn M.C. An overview of pea-nut and its wild relatives. Plant Genetic Resources. 2011;9(1):134-149. DOI: 10.1017/S1479262110000444

5. Chen J.H. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In: International Workshop on Sustained Management of the Soil Rhizosphere System for Efficient Crop Production and Fertilizer Use, October 16–26, 2006. Bangkok, Thailand; 2006. p.1-11.

6. Chen X., Li H., Pandey M.K., Yang Q., Wang X., Garg V. et al. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proceedings of the National Academy of Sciences. 2016;113(24):6785-6790. DOI: org/10.1073/pnas.1600899113

7. Chen X., Lu Q., Liu H., Zhang J., Hong Y., Lan H. et al. Sequencing of Cultivated Peanut, Arachis hypogaea, Yields Insights into Genome Evolution and Oil Improvement. Molecular Plant. 2019;12(7):920-934. DOI: 10.1016/j.molp.2019.03.005

8. Chen Z., Wang M.L., Barkley N.A., Pittman R. A Simple Allele-Specific PCR Assay for Detecting FAD2 Alleles in Both A and B Genomes of the Cultivated Peanut for High-Oleate Trait Selection. Plant Molecular Biology Reporter. 2010;28:542-548. DOI: 10.1007/s11105-010-0181-5

9. Company M., Stalker H.T., Wynne J.C. Cytology and leafspot resistance in Arachis hypogaea × wild species hybrids. Euphytica. 1982;31:885-893. DOI: 10.1007/BF00039228

10. Desmae H., Janila P., Okori P., Pandey M.K., Motagi B.N., Monyo E. et al. Genetics, genomics and breeding of groundnut (Arachis hypogaea L.). Plant Breeding. 2019;138(4):425-444. DOI: 10.1111/pbr.12645

11. Diener U.L., Davis N.D. Aflatoxin formation by Aspergillus flavus. In: L.A. Godblatt (ed.). Aflatoxin: scientific background, control and implications. New York, NY: Academic Press; 1969. p.13-54. DOI: 10.1016/B978-0-12-395513-5.50007-6

12. Du Plessis K., Steinman H. Practical aspects of adverse reactions to peanut. Current Allergy and Clinical Immunology. 2004;17(1):10-14.

13. Ermakov A.I., Davidyan G.G., Yarosh N.P., Rykova R.P., Anashchenko A.V., Lemeshev N.K., Megorskaya O.M. Catalogue of the VIR Global Collection. Issue 337. Oil crops. Characters of oil quality according to fatty acids content (Maslichnye kultury. Kharakteristika kachestva masla po soderzhaniyu zhirnykh kislot). Leningrad: VIR; 1982. [in Russian]

14. Ermakov A.I., Yarosh N.P. Features and variability of oil seed quality in oil crops (Osobennosti i izmenchivost kachestva masla semyan maslichnykh kulturnykh rasteniy). Bulletin of Applied Botany, Genetics and Plant Breeding. 1976;56(3):3-56. [in Russian]

15. FAOSTAT: Food and agriculture data. Available from: http://www.fao.org/faostat/en/#home [accessed Dec. 13, 2019].

16. Gavrilova V.A., Shelenga T.V., Porokhovinova E.A., Dubovskaya A.G., Konkova N.G., Grigoryev S.V. et al. The diversity of fatty acids composition in traditional and rare oil crops cultivated in Russia. Biological Communications [preprint] 2020.

17. Gowda M.V.C., Arunahalam V., Bandyopadhyay A. Rust resistance and its stability in lines of varying productivity in groundnut (Arachis hypogaea L.) Plant Breeding. 1990;105(3):229-237. DOI: 10.1111/j.1439-0523.1990.tb01200.x

18. Husted L. Cytological studies of the peanut Arachis. I. Chromosome number and morphology. Cytologia. 1933;5(1):109-117. DOI: 10.1508/cytologia.5.109

19. Ivanenko E.N. Groundnut: a promising oilseed crop (Arakhis – perspektivnaya maslichnaya kultura) Bulletin of Applied Botany, Genetics and Plant Breeding. 1989;125:31-35. [in Russian]

20. Jones J.B., Provost M., Keaver L., Breen C., Ludy M.-J., Mattes R.D. A randomized trial on the effects of flavorings on the health benefits of daily peanut consumption. The American Journal of Clinical Nutrition. 2014;99(3):490-496. DOI: 10.3945/ajcn.113.069401

21. Jung S., Tate P.L., Horn R., Kochert G., Moore K., Abbott A.G. The Phylogenetic Relationship of Possible Progenitors of the Cultivated Peanut Journal of Heredity. 2003;94(4):334-340. DOI: 10.1093/jhered/esg061

22. Kochert G., Halward T., Branch W.D., Simpson C.E. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theoretical and Applied Genetics. 1991;81:565-570. DOI: 10.1007/bf00226719

23. Krapovickas A., Gregory W.C. Taxonomia del género Arachis (Leguminosae). Bonplandia. 1994;8(1-4):1-186. [in Spanish]

24. Kris-Etherton P.M., Yu-Poth S., Sabate J., Ratcliffe H.E., Zhao G., Etherton T.D. Nuts and their bioactive constituents: effects on serum lipids and other factors that affect disease risk. The American Journal of Clinical Nutrition. 1999;70(3):504-511. DOI: 10.1093/ajcn/70.3.504s

25. Luzina Z.A. Arachis L. – Peanut (Arakhis). In: E.V. Vulf (ed.). Flora of Cultivated Plants of the USSR. Vol. 7. Oil crops (Kulturnaya flora SSSR. T. 7. Maslichnye). Moscow; Leningrad; 1941. p.136-192. [in Russian]

26. Luzina Z.A. Peanut (Arakhis). Moscow; Leningrad: Selkhozgiz; 1954. [in Russian]

27. Mathivanan J., Jayaraman P. Enhancement of Growth and Yield of Arachis hypogeae L. Using Different Biofertilizers. International Letters of Natural Sciences. 2019;74:1-9. DOI: 10.18052/www.scipress.com/ilns.74.1

28. Matveeva T.V., Otten L. Widespread occurrence of natural genetic transformation of plants by Agrobacterium. Plant Molecular Biology. 2019;101(4-5):415-437. DOI: 10.1007/s11103-019-00913-y

29. Matveeva T.V., Sokornova S.V. Biological traits of naturally transgenic plants and their evolutional roles. Russian Journal of Plant Physiology. 2017;64(5):635-648.

30. Monyo E.S., Njoroge S.M.C., Coe R., Osiru M., Madinda F., Waliyar F. et al. Occurrence and distribution of afla-toxin contamination in groundnuts (Arachis hypogaea L) and population densities of Aflatoxigenic Aspergilli in Malawi. Crop Protection. 2012;42:149-155. DOI: 10.1016/j.cropro.2012.07.004

31. Monyo E.S., Varshney R.K. Seven seasons of learning and engaging small holder farmers in the drought-prone areas of sub-Saharan Africa and South Asia through Tropical Legumes, 2007-2014. Patancheru: ICRISAT; 2016.

32. Murty U.R., Jahnavi M.R. The ‘A’ genome of Arachis hypogaea L. Cytologia. 1986;51:241-250.

33. Nigam S.N., Waliyar F., Aruna F.R., Reddy S.V., Kumar L.P., Craufurd P.Q. et al. Breeding Peanut for Resistance to Aflatoxin Contamination at ICRISAT. Peanut Science. 2009;36(1): 42-49. DOI: 10.3146/AT07-008

34. Obydalo D.I., Ogarkov I.A. Peanuts: from the tropics to the temperate latitudes (Arakhis: iz tropikov – v umerennye shiroty). In: History of Scientific Research in VNIIMK for 90 years (Istoriya nauchnykh issledovaniy vo VNIIMK za 90 let). Krasnodar; 2002. p.88-94. [in Russian]

35. Paik-Ro O.G., Smith R.L., Knauft D.A. Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theoretical and Applied Genetics.1992;84:201-208. DOI: 10.1007/bf00224001

36. Pandey M.K., Monyo E., Ozias-Akins P., Liang X., Guimarães P., Nigam S.N. et al. Advances in Arachis genomics for peanut improvement Biotechnology Advances. 2012;30(3):639-651. DOI: 10.1016/j.biotechadv.2011.11.001

37. Peanut cultivation gains more and more popularity in Ukraine (V Ukraine vse bolshey populyarnosti nabyraet vyrashchyvaniya arakhysa). AgroReview. 2018. [in Russian] URL: https://agroreview.com/ru/news/v-ukrayne-vse-bolshej-populyarnosty-nabyraet-vyrashchyvanyya-ara-hysa [дата обращения: 13.12.2019].

38. Phillips T.D., Wynne J.C., Elkan G.H., Schneeweis T.J. Effect of Bradyrhizobium Strain on Combining Ability for Nitrogen Fixation in Peanut (Arachis hypogaea L.). Plant Breeding. 1989;103(2):141-148. DOI: 10.1111/j.1439-0523.1989.tb00362.x

39. Raina S.N., Mukai Y. Detection of a variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome. 2011;42(1):52-59. DOI: 10.1139/g98-092

40. Raina S.N., Rani V., Kojima T., Ogihara Y., Singh K.P., Devarumath R.M. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome. 2001;44(5):763-772.

41. Rami J.-F., Leal-Bertioli S.C.M., Foncéka D., Moretzsohn M.C., Bertioli D.J. Groundnut In: A. Pratap, J. Kumar (eds). Alien Gene Transfer in Crop Plants. Vol. 2. Achievements and Impacts. Philadelphia: Springer; 2014. p.253-279. DOI: 10.1007/978-1-4614-9572-7_12

42. Settaluri V.S., Kandala C.V.K., Puppala N., Sundaram J. Peanuts and Their Nutritional Aspects – A Review. Food and Nutrition Sciences. 2012;3(12):1644-1650. DOI: 10.4236/fns.2012.312215

43. Simpson C.E., Nelson S.C., Star J.L., Woodard K.E., Smith O.D. Registration of TxAg-6 and TxAG-7 peanut germplasm lines. Crop Science. 1993;33(6):1418. DOI: 10.2135/cropsci1993.0011183X003300060079x

44. Singh A.K. Putative genome donors of Arachis hypogaea (Fabaceae), evidence from crosses with synthetic amphidiploids. Plant Systematics and Evolution. 1988;160:143-151. DOI: 10.1007/bf00936041

45. Singh A.K., Moss J.P. Utilization of wild relatives in genetic improvement of Arachis hypogaea L.: 5. Genome analysis in section Arachis and its implication in gene transfer. Theoretical and Applied Genetics. 1984;68:355-364. DOI: 10.1007/bf00267889

46. Singh A.K., Moss J.P. Utilization of wild relatives in genetic improvement of Arachis hypogaea L.: Part 2: chromosome complement of species in section Arachis. Theoretical and Applied Genetics. 1982;61:305-314. DOI: 10.1007/bf00272846

47. Singh M.P., Erickson J.E., Boote K.J., Tillman B.J., Jones J.W., van Bruggen A.H.C. Late Leaf Spot Effects on Growth, Photosynthesis, and Yield in Peanut Cultivars of Differing Resistance. Agronomy Journal. 2011;103(1):85-91. DOI: 10.2134/agronj2010.0322

48. Smartt J., Gregory W.C., Pfluge Gregory M. The genomes of Arachis hypogaea L. Cytogenetic studies of putative genome donors. Euphytica. 1978;27:665-675. DOI: 10.1007/bf00023701

49. Smith B.W. Arachis hypogaea. Aerial flower and subterranean fruit. American Journal of Botany 1950;37(10):802-815. DOI: 10.1002/j.1537-2197.1950.tb11073.x

50. Stalker H.T. A new species in section Arachis of peanuts with a D genome. American Journal of Botany. 1991;78(5):630-637. DOI: 10.1002/j.1537-2197.1991.tb12587.x

51. Strebbins G.L. Genetics, evolution and plant breeding. Indian Journal of Genetics and Plant Breeding. 1957;17:129-141.

52. Subrahmanyam P., Anaidu R., Reddy L.J., Lava Kumar P., Ferguson M.E. Resistance to groundnut rosette disease in wild Arachis species. Annals of Applied Biology. 2001;139(1):45-50. DOI: 10.1111/j.1744-7348.2001.tb00129.x

53. Subrahmanyam P., Moss J.P., Mcdonald D., Rao P.V.S., Rao V.R. Resistance to leaf spot caused by Cercosporidium personatum in wild Arachis species. Plant Disease. 1985;69:951-954. DOI: 10.1094/PD-69-951

54. Thompson L.K., Burgess C.L., Skinner E.N. Localization of phytochrome during peanut (Arachis hypogaea) gynophore and ovule development. American Journal of Botany 1992;79(7):828-832. DOI: 10.1002/j.1537-2197.1992.tb13660.x

55. Thompson L.K., Ziv M., Deitzer G.F. Photocontrol of Peanut (Arachis hypogaea L.) Embryo and Ovule Development in Vitro. Plant Physiology. 1985;78(2):370-373. DOI: 10.1104/pp.78.2.370

56. Toomsan B., McDonagh J.F., Limpinuntana V., Giller K.E. Nitrogen fixation by groundnut and soyabean and residual nitrogen benefits to rice in farmers’ fields in Northeast Thailand. Plant and Soil. 1995;175(1):45-56. DOI: 10.1007/bf02413009

57. Tuz R.K., Podolnaya L.P., Asfandiyarova M.Sh., Dubovskaya A.G., Eremin V.A., Migacheva E.O. Variability of peanut samples of VNIIMK’s breeding in the conditions of the Astrakhan region. Oil Crops. Scientific and Technical Bulletin of VNIIMK. 2018;4(176):64-67. [in Russian]

58. Umen D.P. Peanuts. A guide to the breeding and seed production of oilseeds (Arakhis. Rukovodstvo po selektsii i semenovodstvu maslichnykh kultur). Moscow; 1967. [in Russian]

59. Vakhrusheva T.E. Evaluation of peanut collection (Arachis hipogaea L.). Guidelines (Izucheniye kollektsii arakhisa (Arachis hipogaea L.). Metodicheskiye ukazaniya). St. Petersburg: VIR; 1995. [in Russian]

60. Vakhrusheva T.E. Peanut (Arakhis). In: Oil Crops for Food Purposes in Russia (Breeding Problems and Assortment) (Maslichnye kultury dlya pishchevogo ispolzovaniya v Rossii [problemy selektsii, sortiment]). St. Petersburg: VIR; 1998. p.20-23. [in Russian]

61. Vakhrusheva T.E., Pereverzev D.S. The use of peanuts in the confectionery industry (Ispolzovaniye arakhisa v konditerskoy promyshlennosti) AgroNIITEIPP. 1993;17(2):30. [in Russian]

62. Valls J.F.M., Simpson C.E. New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia. 2005;14(1-2):35-63. DOI: 10.30972/bon.141-21387

63. Wang M.L., Khera P., Pandey M.K., Wang H., Qiao L., Feng S. et al. Genetic Mapping of QTLs Controlling Fatty Acids Provided Insights into the Genetic Control of Fatty Acid Synthesis Pathway in Peanut (Arachis hypogaea L.). PLOS ONE 2015;10(4):e0119454. DOI: 10.1371/journal.pone.0119454

64. Woodward J.E., Brenneman T.B., Kemerait Jr. R.C., Culbreath A.K., Clark J.R. First Report of Botrytis Blight of Peanut Caused by Botrytis cinerea in Georgia. Plant Disease. 2005;89(8):910. DOI: 10.1094/PD-89-0910C

65. Woodward J.E., Brenneman T.B., Kemerait R.C., Culbreath A.K., Smith N.B. On-Farm Evaluations of Reduced Input Fungicide Programs in Peanut Fields with Low, Moderate, or High Levels of Disease Risk. Peanut Science. 2014;41(1):50-57. DOI: 10.3146/PS11-23R2.1

66. Zaaboul F., Raza H., Chen C., Liu Y. Characterization of Peanut Oil Bodies Integral Proteins, Lipids, and Their Associated Phytochemicals. Journal of Food Science. 2018;83(1):93-100. DOI: 10.1111/1750-3841.13995

67. Zhang Y., Sun J., Xia H., Zhao C., Hou L., Wang B. et al. Characterization of peanut phytochromes and their possible regulating roles in early peanut pod development. PLOS ONE. 2018;13(5):e0198041. DOI: 10.1371/journal.pone.0198041

68. Zharare G.E., Blamey F.P.C., Asher C.J. Initiation and Morphogenesis of Groundnut (Arachis hypogaea L.) Pods in Solution Culture. Annals of Botany. 1998;81(3):391-396. DOI: 10.1006/anbo.1997.0569

69. Zhukovsky P.M. Cultivated plants and their relatives (Kulturnye rasteniya i ikh sorodichi). Leningrad; 1971. [in Russian]


Review

For citations:


Kishlyan N.V., Bemova V.D., Matveeva T.V., Gavrilova V.A. Biological peculiarities and cultivation of groundnut (a review). Proceedings on applied botany, genetics and breeding. 2020;181(1):119-127. (In Russ.) https://doi.org/10.30901/2227-8834-2020-1-119-127

Views: 2449


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)