Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Diversity of avenanthramide content in wild and cultivated oats

https://doi.org/10.30901/2227-8834-2020-1-30-47

Abstract

Background. Oat grains accumulate substantial amounts of various phenolic compounds that possess biological activity and have a potential to considerably increase health benefits of oats as a food. Avenanthramides (AVA) is an important group of these compounds due to their antioxidant, anti-itching, anti-inflammatory, antiproliferative activities.

Materials and methods. Using combined HPLC and LC-MS analyses, we provide the first comprehensive review of the total avenanthramide content and composition in cultivated and wild oats. The AVA content was measured in 32 wild and 120 cultivated oat accessions obtained from the global collection of the N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia.

Results and conclusion. The wild hexaploid A. sterilis L. had the highest total AVA content, reaching 1825 mg kg–1. Among cultivated accessions, naked oat cv. ‘Numbat’ (Australia) had the highest AVA content, 586 mg kg–1. The AVA composition exhibited a wide diversity among the analyzed samples. Accessions were identified where AVAs A, B and C, which are generally considered as major AVA, had a low percentage, and instead other AVAs prevailed. The AVA content in eight oat cultivars revealed significant annual changes in both the total AVA content and the proportions of individual AVAs. Using HPLC analyses, 22 distinguishable peaks in AVA extracts of oat seeds were detected and quantified. Several of these peaks, which have not been previously documented, presumably represent different AVAs. Further analyses are needed to detail these findings and to determine the specific AVA structures in oat grains.

About the Authors

S. Leonova
Lund University
Sweden
Box 124, S-22100 Lund


A. Gnutikov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000


I. Loskutov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000


E. Blinova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000


K.-E. Gustafsson
Swedish University of Agricultural Sciences
Sweden
Sundsvägen 10, 23053 Alnarp


O. Olsson
Lund University; CropTailor AB, Lund University
Sweden
Box 124, S-22100 Lund


References

1. Boz H. Phenolic Amides (Avenanthramides) in Oats – A review. Czech Journal of Food Sciences. 2015;33(5):399-404. DOI: 10.17221/696/2014-CJFS

2. Bratt K., Sunnerheim K., Bryngelsson S., Fagerlund A., Engman L., Andersson R.E. et al. Avenanthramides in oats (Avena sativa L.) and structure-antioxidant activity relationships. Journal of Agricultural and Food Chemistry. 2003;51(3):594-600. DOI: 10.1021/jf020544f

3. Bryngelsson S., Ishihara A., Dimberg L.H. Levels of Avenanthramides and Activity of Hydroxycinnamoyl-CoA:hydroxyanthranilate N-Hydroxycinnamoyl Transferase (HHT) in Steeped or Germinated Oat Samples. Cereal Chemistry. 2003;80(3):356-360. DOI: 10.1094/CCHEM.2003.80.3.356

4. Bryngelsson S., Mannerstedt-Fogelfors B., Kamal-Eldin A., Andersson R., Dimberg L.H. Lipids and antioxidants in groats and hulls of Swedish oats (Avena sativa L). Journal of the Science of Food and Agriculture. 2002;82(6):606-614. DOI: 10.1002/jsfa.1084

5. Collins F.W. Oat phenolics: avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls. Journal of Agricultural and Food Chemistry. 1989;37(1):60-66. DOI: 10.1021/jf00085a015

6. Collins F.W. Oat Phenolics; Biochemistry and Biological Functionality. In: F.H. Webster, P.J. Woods (eds). Oats: Chemistry and Technology. 2nd ed. St. Paul, MN: AACC Inc. p.157-217.

7. Collins F.W., Burrows V.D. 2012. Method for increasing concentration of avenanthramideds in oats. USA; patent number: US2012/0082740A1; 2012.

8. Dimberg L.H., Gissén C., Nilsson J. Phenolic compounds in oat grains (Avena sativa L.) grown in conventional and organic systems. Ambio. 2005;34(4-5),331-337. DOI: 10.1639/0044-7447(2005)034[0331:pcioga]2.0.co;2

9. Dimberg L.H., Molteberg E.L., Solheim R., Frølich W. Variation in Oat Groats Due to Variety, Storage and Heat Treatment. I: Phenolic Compounds. Journal of Cereal Science. 1996;24(3):263-272. DOI: 10.1006/jcrs.1996.0058

10. Dimberg L.H, Sunnerheim K., Sundberg B., Walsh K. Stability of Oat Avenanthramides. Cereal Chemistry. 2001;78(3):278-281. DOI: 10.1094/CCHEM.2001.78.3.278

11. Emmons C., Peterson D.M. Antioxidant Activity and Phenolic Content of Oat as Affected by Cultivar and Location. Crop Science. 2001;41(6):1676-1681. DOI: 10.2135/crop-sci2001.1676

12. Guo W., Nie L., Wu D., Wise M.L., Collins F.W., Meydani S.N., Meydani M. Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro. Nutrition and Cancer. 2010;62(8):1007-1016. DOI: 10.1080/01635581.2010.492090

13. Hitayezu R., Baakdah M.M., Kinnin J., Henderson K., Tsopmo A. Antioxidant activity, avenanthramide and phenolic acid contents of oat milling fractions. Journal of Cereal Science. 2015;63:35-40. DOI: 10.1016/j.jcs.2015.02.005

14. Ishihara A., Miyagawa H., Kuwahara Y., Ueno T., Mayama S. Involvement of Ca 2+ ion in phytoalexin induction in oats. Plant Science. 1996;115:9-19.

15. Koenig R., Dickman J.R., Kang C., Zhang T., Chu Y.F., Ji L.L. Avenanthramide supplementation attenuates exercise-induced inflammation in postmenopausal women. Nutrition Journal. 2014;13:21. DOI: 10.1186/1475-2891-13-21

16. Loskutov I.G. Oat (Avena L.). distribution, taxonomy, evolution and breeding value. St. Petersburg: VIR; 2007. [in Russian]

17. Loskutov I.G., Kovaleva O.N., Blinova E.V. Guidelines for the study and conservation of the global collection of barley and oats (Metodicheskiye ukazaniya po izucheniyu i sokhraneniyu mirovoy kollektsii yachmenya i ovsa). St. Petersburg: VIR; 2012. [in Russian]

18. Loskutov I.G., Rines H.W. Avena L. In: C. Kole (ed.). Wild Crop Relatives: Genomic and Breeding Resources. Heidelberg, Berlin: Springer; 2011. p.109-184. DOI: 10.1007/978-3-642-14228-4_3

19. Matsukawa T., Isobe T., Ishihara A., Iwamura H. Occurrence of avenanthramides and hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyltransferase activity in oat seeds. Zeitschrift für Naturforschung C. A Journal of Biosciences. 2000;55(1-2):30-36. DOI: 10.1515/znc-2000-1-207

20. Mattila P., Pihlava J.M., Hellström J. 2005. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. Journal of Agricultural and Food Chemistry. 2005;53(21): 8290–8295. DOI: 10.1021/jf051437z

21. Mayama S., Bordin A.P.A., Morikawa T., Tanpo H., Kato H. Association between avenalumin accumulation, infection hypha length and infection type in oat crosses segregating for resistance to Puccinia coronata f. sp. avenae race 226. Physiological and Molecular Plant Pathology. 1995a;46:255-261.

22. Mayama S., Bordin A.P.A., Morikawa T., Tanpo H., Kato H. Association of avenalumin accumulation with co-segregation of victorin sensitivity and crown rust resistance in oat lines carrying the Pc-2 gene. Physiological and Molecular Plant Pathology. 1995b;46:263-274.

23. Meydani M. Potential health benefits of avenanthramides of oats. Nutrition Reviews. 2009;67(12):731-735. DOI: 10.1111/j.1753-4887.2009.00256.x

24. Miyagawa H., Ishihara A., Nishimoto T., Ueno T., Mayama S. Induction of Avenanthramides in Oat Leaves Inoculated with Crown Rust Fungus, Puccinia coronata f. sp. avenae. Bioscience, Biotechnology, and Biochemistry. 1995;59(12):2305-2306. DOI: 10.1271/bbb.59.2305

25. Ortiz-Robledo F., Villanueva-Fierro I., Oomah B.D., Lares-Asef I., Proal-Nàjera J.B., Nàvar-Chaidez J.J. Avenanthramides and nutritional components of four Mexican oat (Avena sativa L.) varieties. Agrociencia, 2013;47(3): 225-232.

26. Peterson D.M. Oat Antioxidants. Journal of Cereal Science. 2001;33(2):115-129. DOI: 10.1006/jcrs.2000.0349

27. Peterson D.M., Dimberg L.H. 2008. Avenanthramide concentrations and hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyltransferase activities in developing oats. Journal of Cereal Science. 2008;47(1):101-108. DOI: 10.1016/j.jcs.2007.02.007

28. Peterson D.M., Wesenberg D.M., Burrup D.E., Erikson C.A. Relationships among Agronomic Traits and Grain Composition in Oat Genotypes Grown in Different Environments. Crop Science. 2005;45:1249-1255. DOI: 10.2135/cropsci2004.0063

29. Redaelli R., Dimberg L., Germeier C.U., Berardo N., Locatelli S., Guerrini L. Variability of tocopherols, tocotrienols and avenanthramides contents in European oat germplasm. Euphytica. 2016;207:273-292. DOI: 10.1007/s10681-015-1535-8

30. Ren Y., Wise M. Avenanthramide Biosynthesis in Oat Cultivars Treated with Systemic Acquired Resistance Elicitors. Cereal Research Communications. 2012;41(2):255-265. DOI: 10.1556/CRC.2012.0035

31. Ren Y., Yang X., Niu X., Liu S., Ren G. Chemical characterization of the avenanthramide-rich extract from oat and its effect on D-galactose-induced oxidative stress in mice. Journal of Agricultural and Food Chemistry. 2011;59(1):206-211. DOI: 10.1021/jf103938e

32. Rodionova N.A., Soldatov V.N., Merezhko V.E., Yarosh N.P., Kobylyansky V.D. Flora of cultivated plants. Vol. 2 (Pt 3). Oat (Kulturnaya flora. T. 2, ch. 3. Oves). Moscow: Kolos; 1994. [in Russian]

33. Wang P., Chen H., Zhu Y., McBride J., Fu J., Sang S. Oat Avenanthramide-C (2c) Is Biotransformed by Mice and the Human Microbiota into Bioactive Metabolites. The Journal of Nutrition. 2014;145(2):239-245. DOI: 10.3945/jn.114.206508

34. Wise M.L. Avenanthramides: Chemistry and Biosynthesis. In: Y. Chu (ed.). Oats Nutrition and Technology. Chichester, UK: John Wiley & Sons Ltd.; 2014. p.195-226. DOI: 10.1002/9781118354100.ch8

35. Wise M.L. Effect of chemical systemic acquired resistance elicitors on avenanthramide biosynthesis in oat (Avena sativa). Journal of Agricultural and Food Chemistry. 2011;59(13):7028-7038. DOI: 10.1021/jf2008869

36. Wise M.L., Doehlert D.C., McMullen M.S. Association of Avenanthramide Concentration in Oat (Avena sativa L.) Grain with Crown Rust Incidence and Genetic Resistance. Cereal Chemistry. 2008;85(5):639-641. DOI: 10.1094/CCHEM-85-5-0639

37. Yang J., Ou B., Wise M.L., Chu Y. In vitro total antioxidant capacity and anti-inflammatory activity of three common oat-derived avenanthramides. Food Chemistry. 2014;160(1):338–345. DOI: 10.1016/j.foodchem.2014.03.059


Review

For citations:


Leonova S., Gnutikov A., Loskutov I., Blinova E., Gustafsson K., Olsson O. Diversity of avenanthramide content in wild and cultivated oats. Proceedings on applied botany, genetics and breeding. 2020;181(1):30-47. https://doi.org/10.30901/2227-8834-2020-1-30-47

Views: 1398


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)