Genotype–environment interactions and inheritance of quantitative traits in a hybrid combination between seeded and seedless grapevine cultivars (Vitis vinifera L.)
https://doi.org/10.30901/2227-8834-2019-4-99-112
Abstract
The genotype–environment interactions and the inheritance of quantitative traits in a hybrid combination between a seeded grapevine cultivar and a seedless one (Armira × Rusalka 1) have been studied. It has been found that the selection of valuable hybrid forms shall become more efficient when conducted according to the traits ‘flowering – berry softening’, ‘berry softening – technological maturity’, ‘cluster weight’, ‘weight of 100 berries’ and ‘acids’. Dominant gene interactions with the environment are characterized by significantly greater intensity in comparison to those of additive genes. Inheritance in F1 progeny manifests very high values for the traits ‘budding’, ‘flowering’, ‘budding – flowering’, ‘flowering – berry softening’, ‘berry softening – technological maturity’, ‘berry length’. ‘berry width’, ‘weight of 100 berries’, ‘sugars’ and ‘acids’. According to the genetic stability of the dominant parameter interacting with the environment, a comparative evaluation can be made for each trait and, depending on the selection purpose, elite hybrid plants can be singled out, which possess a combination of the most important commercial traits.
About the Author
V. RoychevBulgaria
12 Mendeleev Blvd., Plovdiv 4000
References
1. Allard R.W., Bradshaw A.D., Implication of genotype–environmental interactions in applied plant breeding. Crop Sci. 1964;4:503-508.
2. Comstock R.E., Moll R.H., Genotype–environment interactions. In: W.D. Hanson, H.F. Robinson (eds). Statistical Genetics and Plant Breeding. Washington DC: NAS–NRC; 1963. p.164-196.
3. Eberhart S.A., Russell W.A. Stability parameters for comparing varieties. Crop Sci. 1966;6(1):36-40. DOI: 10.2135/cropsci1966.0011183X000600010011x
4. Fedin M.A., Silis D.Y., Smiryaev A.V. Statistical methods of genetic analysis (Statisticheskiye metody geneticheskogo analiza). Moscow: Kolos; 1980. [in Russian]
5. Finlay K.W., Wilkinson G.N. The analysis of adaptation in a plant-breeding programme. Austr. J. Agric. Res. 1963;14(6):742-754. DOI: 10.1071/AR9630742
6. Freeman G.H., Statistical methods for the analysis of genotype–environment interaction. Heredity. 1973;31(3):339-354 DOI: 10.1038/hdy.1973.90
7. Freeman G.H., Perkins J.M. Environmental and genotype–environmental components of variability VIII. Relation between genotypes grown in different environments and measures of these environments. Heredity. 1971;27:15-23. DOI: 10.1038/hdy.1971.67
8. Hill J., Genotype–environment interaction – a challenge for plant breeding. J. Agric. Sci. 1975;85(3):477-493. DOI: 10.1017/S0021859600062365
9. Kearsey M.J. Biometrical genetics in breeding. In: M.D. Hayward, N.O. Bosemark, I. Romagosa (eds). Plant Breeding: Principles and prospects. London: Chapman & Hall; 1973. p.163-183.
10. Khotyleva L.V., Tarutina L.A. Interaction of genotype and environment (Assessment methods) (Vzaimodeystviye genotipa i sredy [Metody otsenki]). Minsk: Nauka i tekhnika; 1982. [in Russian]
11. Kilchevsky A.V., Khotyleva L.V. A method for assessing the adaptive ability and stability of genotypes, through the differentiating environmental inϐluence. Communication I. Justiϐication of the method (Metod otsenki adaptivnoy sposobnosti i stabilnosti genotipov, differentsiiruyushchey sposobnosti sredy. Soobshcheniye I. Obosnovaniye metoda). Russian Journal of Genetics. 1985;21(9):1481-1490. [in Russian]
12. Kilchevsky A.V., Khotyleva L.V. Genotype and environment in plant breeding (Genotip i sreda v selektsii rasteniy). Minsk: Nauka i tekhnika; 1989. [in Russian]
13. Lakin G.F. Biometrics (Biometriya). Moscow: Vysshaya shkola; 1990. [in Russian]
14. Mather K., Caligari P.D. Genotype × environment interactions. IV. The effect of the background genotype. Heredity. 1976;36(1):41-48. DOI: 10.1038/hdy.1976.4
15. Mather K., Jinks J.L. Biometrical Genetics: The study of continuous variations. New York: Cornell University Press; 1971. DOI: 10.1002/bimj.19730150511
16. Moreno-Gonzáles J. Selection strategies and choice of breeding methods. In: M.D. Hayward, N.O. Bosemark, I. Romagosa (eds). Plant Breeding: Principles and prospects. London: Chapman & Hall; 1993. p.281-313.
17. Moreno-Gonzáles J., Cubero J.I., Choice of environments in reciprocal recurrent selection programs. Theor Appl Genet. 1986;71(4):652-656. DOI: 10.1007/BF00264271.
18. Perkins J.M., Jinks J.L. Environmental and genotype–environmental components of variability. III. Multiple lines and cro sses. Heredity. 1968;23:339-356. DOI: 10.1038/hdy.1968.48
19. Perkins J.M., Jinks J.L. Environmental and genotype–environmental components of variability IV. Non-linear interactions for multiple inbred lines. Heredity. 1968;23:525-535. DOI: 10.1038/hdy.1968.71
20. Perkins J.M., Jinks J.L. Specificity of the interaction of genotypes with contrasting environments. Heredity. 1971;26(3):463-474.
21. Perkins J.M., Jinks J.L. The assessment and specificity of environmental and genotype–environmental components of variability. Heredity. 1973;30(2):111-126. DOI: 10.1038/hdy.1973.16
22. Rokitsky P.F. Biological statistics (Biologisheskaya statistika). 3rd ed. Minsk: Vysheyshaya shkola; 1973. [in Russian]
23. Roychev R. Ampelography. Plovdiv: Agricultural University Academic Publishers; 2012. [in Bulgarian]
24. Roychev R. Students’ guide to ampelography. Plovdiv: Agricultural University Academic Publishers; 2014. [in Bulgarian]
25. Savchenko V.K. Genetic analysis in network test crosses (Geneticheskiy analiz v setevykh probnykh skreshchivaniyakh). Minsk: Nauka i tekhnika; 1984. [in Russian]
Review
For citations:
Roychev V. Genotype–environment interactions and inheritance of quantitative traits in a hybrid combination between seeded and seedless grapevine cultivars (Vitis vinifera L.). Proceedings on applied botany, genetics and breeding. 2019;180(4):99-112. (In Russ.) https://doi.org/10.30901/2227-8834-2019-4-99-112