Release of two hexaploid oat (Avena sativa L.) cultivars with high nutritive value of groat for human consumption: an innovation at the Moroccan national level
https://doi.org/10.30901/2227-8834-2025-3-245-259
Abstract
Moroccan oat breeding has traditionally targeted forage yield, yet the wild tetraploid oat species Avena murphyi Ladiz. possesses proteinand β-glucan-enhancing alleles largely absent from cultivated germplasm.
The two decades of research, exploiting the wild tetraploid oat species A. murphyi through backcross introgression led to the release of the first Moroccan improved hexaploid oats cultivars, ‘Al Fawze’ and ‘Abtah’, developed for human consumption.
Peer-reviewed papers, institutional reports and breeder datasets were screened for local Avena L. diversity and conservation, interspecific hybridization procedures, multi-environment performance under rainfed Mediterranean conditions, and nutritional and techno-functional traits relevant to food, feed and industrial use.
Introgressed lines achieved 17% groat protein content, 5% groat β-glucan content and 38 g thousand-kernel weight while sustaining 34–43 q ha⁻¹ grain yield in addition to broad resistance to crown rust, powdery mildew, and BYDV. A 20% substitution of bread-wheat flour with ‘Al Fawze’ flour increased loaf protein by 14% without altering dough rheology, signaling immediate value for bakery and cereal products.
Leveraging endemic wild germplasm fast-tracked the creation of climate-adapted, nutrient-dense oats for human consumption. Next steps include certified-seed scale-up, processor partnerships, and consumer-focused validation of sensory quality, sustainability, and health benefits.
Keywords
About the Authors
N. SaidiMorocco
Nezha Saidi - PhD, National Institute for Agricultural Research.
INRA, Avenue Ennasr, Rabat 10000, Morocco
N. Shaimi
Morocco
Naima Shaimi - PhD, National Institute for Agricultural Research.
INRA, Avenue Ennasr, Rabat 10000, Morocco
M. Taghouti
Morocco
Mouna Taghouti - PhD, National Institute for Agricultural Research.
INRA, Avenue Ennasr, Rabat 10000, Morocco
A. Benali
Morocco
Aouatif Benali - PhD, National Institute for Agricultural Research.
INRA, Avenue Ennasr, Rabat 10000, Morocco
R. Manzali
Russian Federation
Rajae Manzali - PhD, Hassan I University, National Institute for Agricultural Research, Regional Center for Agricultural Research of Rabat.
50 Rue Ibnou Lhaytham, Settat 26002, Morocco; INRA, Avenue Ennasr, Rabat 10000, Morocco
S. Touil
Morocco
Salma Touil - Ibn Tofail University, National Institute for Agricultural Research, Regional Center for Agricultural Research of Rabat, Avenue de l’Université.
Kénitra 14000, Morocco; INRA, Avenue Ennasr, Rabat 10000, Morocco
A. Douaik
Morocco
Ahmed Douaik - PhD, National Institute for Agricultural Research.
INRA, Avenue Ennasr, Rabat 10000, Morocco
F. Gaboun
Russian Federation
Fatima Gaboun - PhD, National Institute for Agricultural Research.
INRA, Avenue Ennasr, Rabat 10000, Morocco
M. Bouksaim
Russian Federation
Mohamed Bouksaim - PhD, National Institute for Agricultural Research.
INRA, Avenue Ennasr, Rabat 10000, Morocco
Ch. Al Faiz
Russian Federation
Chawki Al Faiz - Ex Senior Scientist, National Institute for Agricultural Research.
INRA, Avenue Ennasr, Rabat 10000, Morocco
G. Ladizinsky
Russian Federation
Gideon ladizinsky - Professor, Ex Principal Investigator.
Project No. TAMOU 97-053, Washington DC 20523
References
1. Al Faiz C. Sélection de nouvelles variétés d’avoine au Maroc. Terre Marocaine. 1990;115:8-13. [in French]
2. Al Faiz C., Chakroun M., Allagui M.B., Sbeita A. Fodder oats in the Maghreb. In: J.M. Suttie, S.G. Reynolds (eds). Fodder Oats: A World Overview. Rome: FAO; 2004. p.53-91.
3. Al Faiz C., Saidi S., Jaritz G. Avoine fourragère (Avena sativa L.). In: G. Jaritz, M. Bounejmate (eds). Production et utilisation des cultures fourragères au Maroc. Rabat: INRA; 1997. p.209-224. [in French]
4. Alrahmany R., Tsopmo A. Role of carbohydrases on the release of reducing sugar, total phenolics and on antioxidant properties of oat bran. Food Chemistry. 2012;132(1):413-418. DOI: 10.1016/j.foodchem.2011.11.014
5. Aoun M., Carter A.H., Morris C.F., Kiszonas A.M. Genetic architecture of end-use quality traits in soft white winter wheat. BMC Genomics. 2022;23(1):440. DOI: 10.1186/s12864-02208676-5
6. Ardayfio N.K., Kinney C., Li D., Naraghi S.M., McMullen M.S., Fiedler J.D. Genome-wide association studies reveal genetic control of nutritional quality, milling traits, and agronomic characteristics in oat (Avena sativa L.). Plant Genome. 2025;18(3):e70060. DOI: 10.1002/tpg2.70060
7. Clamot G. Recherche sur l’amélioration de la teneur en protéine de l’avoine. In: Seed Protein Improvement in Cereals and Grain Legumes: Proceedings of an International Symposium on Seed Protein Improvement in Cereals and Grain Legumes; September 4–8, 1978; Neuherberg, Federal Republic of Germany. Vol. II. Vienna: IAEA/FAO; 1979. p.345-356. [in French]
8. Comeau A., Haber S. Breeding for resistance: The example of Barley Yellow Dwarf Virus. Oat Newsletter. 1986;37:98-99. Doehlert D.C., McMullen M.S., Baumann R.R. Factors affecting groat percentage in oat. Crop Science. 1999;39(6):1858-1865. DOI: 10.2135/cropsci1999.3961858x
9. FAO. Food and Agriculture Organization of the United Nations. World food situation. FAO Cereal Supply and Demand Brief: [website]. Available from https://www.fao.org/worldfoodsituation/csdb/en [accessed May 12, 2025].
10. FAOSTAT. Food and Agriculture Organization of the United Nations. Food and Agriculture Data: [website]. Available from: https://www.fao.org/faostat/en/#data/QCL [accessed May 12, 2025].
11. Gomez K.A., Gomez A.A. Statistical procedures for agricultural research. 2nd ed. New York, NY: John Wiley and Sons; 1984. Hall M.B., Tarr A.W., Karopoulos M. Using digital imaging to estimate groat percent and milling yield in oats. Journal of Cereal Science. 2003;37(3):343-348. DOI: 10.1006/jcrs.2002.0507
12. Harlan J.R. Crops and man. 2nd ed. Madison, WI: American Society of Agronomy and Crop Science Society of America; 1992.
13. International Seed Testing Association. International rules for seed testing. Bassersdorf: ISTA; 2018. DOI: 10.15258/istarules.2018.F
14. International Seed Testing Association. International rules for seed testing. Seed Science and Technology. 1985;13(2):299513.
15. Jeger M.J., Viljanen-Rollinson S.L.H. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics. 2001;102(1):32-40. DOI: 10.1007/s001220051615
16. Ladizinsky G. New evidence on the origin of the hexaploid oats. Evolution. 1969;23(4):676-684. DOI: 10.1111/j.1558-5646.1969.tb03549.x
17. Ladizinsky G., Fainstein R. Introgression between the cultivated hexaploid oat A. sativa and the tetraploid wild oats
18. A. magna and A. murphyi. Canadian Journal of Genetics and Cytology. 1977;19(1):59-66. DOI: 10.1139/g77-007
19. Ladizinsky G., Johnson B.L. Seed protein homologies and the evolution of polyploidy in Avena. Canadian Journal of Genetics and Cytology. 1972;14(4):875-888. DOI: 10.1139/g72-108
20. Leggett J.M. Classification and speciation in Avena. In: H.G. Marshall, M.E. Sorrells (eds.). Oat Science and Technology. Madison, WI: American Society of Agronomy; 1992. p.29-52.
21. Leggett J.M., Ladizinsky G., Hagberg P., Obanni M. The distribution of nine Avena species in Spain and Morocco. Canadian Journal of Botany. 1992;70(2):240-244. DOI: 10.1139/b92-033
22. Loskutov I.G. Influence of vernalization and photoperiod on the vegetation period of wild species of oats (Avena spp.). Euphytica. 2001a;117(2):125-131. DOI: 10.1023/A:1004073904939
23. Loskutov I.G. Interspecific crosses in the genus Avena L. Russian Journal of Genetics. 2001b;37(5):467-475. DOI: 10.1023/A:1016697812009
24. Loskutov I.G., Rines H.W. Avena L. In: C. Kole (ed.). Wild Crop Relatives: Genomic and Breeding Resources. Heidelberg; Berlin: Springer; 2011. p.109-184. DOI: 10.1007/978-3-64214228-4_3
25. Manzali R., Bouksaim M., Douaik A., Ladizinsky G., Saidi N. Variation of some physical and chemical quality traits of Moroccan domesticated tetraploid oat lines of Avena murphyi Ladiz. Proceedings on Applied Botany, Genetics and Breeding. 2023;184(1):128-136. DOI: 10.30901/2227-88342023-1-128-136
26. Manzali R., El Antari A., Douaik A., Taghouti M., Benchekroun M., Bouksaim M. et al. Profiling of nutritional and health-related compounds in developed hexaploid oat lines derivative of interspecific crosses. International Journal of Celiac Disease. 2017;5(2):72-76. DOI: 10.12691/ijcd-5-2-6
27. Manzali R., Touil S., Douaik A., Aoussar N., Bouksaim M., Saidi N. Exploring extraction techniques for bioactive compounds and investigating antioxidant properties in Moroccan oat lines. Proceedings on Applied Botany, Genetics and Breeding. 2025;186(1):177-190. DOI: 10.30901/2227-88342025-1-177-190
28. Marshall G.N., Wortman C.B., Kusulas J.W., Hervig L.K., Vickers Jr. R.R. Distinguishing optimism from pessimism: Relations to fundamental dimensions of mood and personality. Journal of Personality and Social Psychology. 1992;62(6):1067-1074. DOI: 10.1037/0022-3514.62.6.1067
29. McCleary B.V., Charnock S.J., Rossiter P., O’Shea M.F., Power A.M., Lloyd R.M. Measurement of carbohydrates in grain, feed and food. Journal of the Science of Food and Agriculture. 2006;86(11):1648-1661. DOI: 10.1002/jsfa.2497
30. Moser H.S., Frey K.J. Direct and correlated responses to three S1-recurrent selection strategies for increasing protein yield in oat. Euphytica. 1994;78:123-132. DOI: 10.1007/BF00021407
31. Oelke E.A., Oplinger E.S., Teynor T.M., Putnam D.H., Doll J.D., Kelling K.A., Durgan B.R., Noetzel D.M. Safflower: Alternative field crop manual. Madison, WI: University of Wisconsin; 1992.
32. ONSSA. Bilan des activités de contrôle réalisées par l’ONSSA au titre de l’année 2019. Office National de Sécurité Sanitaire des Produits Alimentaires; 2020. Available from: https:// www.agrimaroc.ma/onssa-operations-controle-2019 [accessed May 19, 2025]. [in French]
33. Peterson D.M., Mannerstedt Fogelfors B. Cultivation environment affects antioxidants, protein and oil content of oat genotypes differently. Agrifood Research Reports. 2004;51:239.
34. Rajhathy T., Sadasivaiah R.S. The cytogenetic status of Avena magna. Canadian Journal of Genetics and Cytology. 1969;11(1):77-85. DOI: 10.1139/g69-010
35. Rashed M.S., Pojić M., McDonagh C., Gallagher E., Frias J.M., Pathania S. Structure-function relationship of oat flour fractions when blended with wheat flour: Instrumental and nutritional quality characterization of resulting breads. Journal of Food Science. 2024;89(6):3347-3368. DOI: 10.1111/1750-3841.17089
36. Saari E.E., Prescott J.M. A scale for appraising the foliar intensity of wheat diseases. Plant Disease Reporter. 1975;59(5):377-380.
37. Saidi N. Amélioration de la teneur en protéines du grain des variétés marocaines d’avoine hexaploïde (A. sativa) par l’utilisation des espèces tétraploïdes sauvages (A. magna et A. murphyi) [dissertation]. Rabat: Institut Agronomique et Vétérinaire Hassan II; 2015. [in French]
38. Saidi N., Al Faiz C. Performance of the Quaker International Oat Nurseries under Moroccan ecological conditions. In: Proceedings of the 8th International Oat Conference (IOC); University of Minnesota; June 28 – July 2, 2008. Minneapolis, MN: University of Minnesota; 2008. Available from: https://graingenes.org//GG2/Avena/event/IOC2008/ [accessed May 05, 2025].
39. Saidi N., Hilali A., Shaimi N., Al Faiz C., Ladizinsky G. Assessment of groat nutritional aspects of newly developed hexaploid oat lines through interspecific crosses with the tetraploid oat A. murphyi. Journal of General Engineering and Technology. 2016;1(1):25-34.
40. Saidi N., Shaimi N., Idrissi A.S., Souihka A., Gaboun F., Al Faiz C. et al. Domestication of Avena magna Murphy & Terrell: a wild tetraploid oat species endemic to Morocco. Proceedings on Applied Botany, Genetics and Breeding. 2020;181(1):84-92. DOI: 10.30901/2227-8834-2020-1-84-92
41. Saidi N., Touil S., Shaimi N., Douaik A., Ladizinsky G. Assessment of genotype × environment effect on groat protein and beta-glucan contents in a Moroccan collection of wild tetraploid oat species of Avena magna Murphy and Terrell and A. murphyi Ladiz. Genetic Resources and Crop Evolution. 2025;72(2):5139-5149. DOI: 10.1007/s10722-024-02247-1
42. Singh R.J. Plant cytogenetics. 3rd ed. Boca Raton, FL: CRC Press; 2016. DOI: 10.1201/9781315374611
43. Stevens E.J., Armstrong K.W., Bezar H.J., Griffin W.B., Hampton J.G. Background to fodder oats worldwide. In: J.M. Suttie, S.G. Reynolds (eds). Fodder Oats: A World Overview. Rome: FAO; 2004. p.11-18.
44. Thomas H., Bhatti I.M. Notes on the cytogenetic structure of the cultivated oat Avena sativa (2n=6x=42). Euphytica. 1975;24:149-157. DOI: 10.1007/BF00147179
45. Thomas H., Haki J.M., Arangeb S. The introgression of characters of the wild oat Avena magna (2n=4x=28) into the cultivated oat A. sativa (2n=6x=42). Euphytica. 1980;2:391-399. DOI: 10.1007/bf00025138
46. Welch R.W., Brown J.C., Leggett J.M. Interspecific and intraspecific variation in grain and groat characteristics of wild oat (Avena) species: Very high groat (1→3)(1→4)-β-D-glucan in an Avena atlantica genotype. Journal of Cereal Science. 2000;31:273-279.
47. Zhu S., Rossnagel B.G., Kaeppler H.F. Genetic analysis of quantitative trait loci for groat protein and oil content in oat. Crop Science. 2004;44(1):254-260. DOI: 10.2135/cropsci2004.2540
Review
For citations:
Saidi N., Shaimi N., Taghouti M., Benali A., Manzali R., Touil S., Douaik A., Gaboun F., Bouksaim M., Al Faiz Ch., Ladizinsky G. Release of two hexaploid oat (Avena sativa L.) cultivars with high nutritive value of groat for human consumption: an innovation at the Moroccan national level. Proceedings on applied botany, genetics and breeding. 2025;186(3):245-259. https://doi.org/10.30901/2227-8834-2025-3-245-259