Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Vavilov’s law in the era of next-generation sequencing: answers, puzzles, hints

https://doi.org/10.30901/2227-8834-2025-3-187-198

Abstract

Since N. I. Vavilov’s report in Saratov on June 4, 1920, the Law of Homologous Series in Hereditary Variation has not only found practical application in the targeted search for new sources for breeding, but also played an important role in the development of the global plant genetic resources collection. Mechanisms underlying the series observed were progressively revealed with the development of approaches in fundamental science: first in research with cytogenetic methods, then in the course of molecular genetic mapping of genes, and finally with the help of comparative genomics in the era of Next-Generation Sequencing (NGS). The obvious explanation for the Law formulated by Vavilov seems to be the genetic similarity of organisms, their common origin. At the same time, in light of the currently well-documented synteny of genomes, Vavilov’s law is widely used both in special genetics and for creation of donors of traits valuable for breeding. The Law is also applied for improving plant genotypes using targeted mutagenesis. The article provides specific examples of such research, as well as examples confirming the connection between homologous series in hereditary variation and the synteny of genomes. The solved (or not yet solved) puzzles of “gaps” in homologous series or their unexpected “interruption” in a series of relatively close taxa are discussed. It became clear with the accumulation of results of these studies that convergence, not only synteny, often underlies homologous series. Natural selection often uses different genes and different mutations to “achieve” the same result in different species. Such a “quick solution” is especially valuable for species surviving in rapidly changing environmental conditions. Convergence is the result of adaptation to unfavorable conditions, when natural selection “uses” previously neutral mutations that become important for adaptation in a changed environment. Today, faced with the challenges of changing climate and unstable weather conditions, it is important to apply these Nature’s hints and adapt this mechanism for breeding. The possibilities of using targeted mutagenesis to make a diversity of mutant forms based on numerous inactive gene duplications in the crop genomes for further testing under various stress conditions are discussed. The editing-based targeted reprogramming of duplicated copies for future environmental conditions is also possible. However, this strategy requires preliminary analysis of big data accumulated on gene and metabolic networks, as well as phenotypic data under various environmental conditions. Some of such data have already been accumulated through long-term studies of the VIR collection under various ecogeographic conditions. Joint efforts of breeders, geneticists, bioinformaticians, genetic engineers, and plant genetic resources experts can ensure the implementation of a fundamentally new strategy for improving cultivated plants by modeling natural adaptation processes and targeted use of gene duplications.

About the Author

E. K. Khlestkina
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Elena K. Khlestkina - Dr. Sci. (Biology), Professor of the RAS, Corr. Member of the RAS, Director.

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



References

1. Abrouk M., Athiyannan N., Müller T., Pailles Y., Stritt C., Roulin A.C. et al. Population genomics and haplotype analysis in spelt and bread wheat identifies a gene regulating glume color. Communications Biology. 2021;4(1):375. DOI: 10.1038/s42003-021-01908-6

2. Abrouk M., Murat F., Pont C., Messing J., Jackson S., Faraut T. et al. Palaeogenomics of plants: Synteny-based modelling of extinct ancestors. Trends in Plant Science. 2010;15(9):479-487. DOI: 10.1016/j.tplants.2010.06.001

3. Ahn S., Tanksley S.D. Comparative linkage maps of the rice and maize genomes. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(17):79807984. DOI: 10.1073/pnas.90.17.7980

4. Ashikari M., Sasaki A., Ueguchi-Tanaka M., Itoh H., Nishimura A., Datta S. et al. Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breeding Science. 2002;52(2):143-150. DOI: 10.1270/jsbbs.52.143

5. Blanco A., Bellomo M.P., Cenci A., De Giovanni C., D’Ovidio R., Iacono E. et al. A genetic linkage map of durum wheat. Theoretical and Applied Genetics. 1998;97(5):721-728. DOI: 10.1007/s001220050948

6. Börner A. Gene and genome mapping in cereals. Cellular and Molecular Biology Letters. 2002;7(2A):423-429.

7. Butler N.M., Baltes N.J., Voytas D.F., Douches D.S. Geminivirus-mediated genome editing in potato (Solanum tubero­ sum L.) using sequence-specific nucleases. Frontiers in Plant Science. 2016;7:1045. DOI: 10.3389/fpls.2016.01045

8. Devos K.M., Atkinson M.D., Chinoy C.N., Francis H.A., Harcourt R.L., Koebner R.M. et al. Chromosomal rearrangements in the rye genome relative to that of wheat. The­ oretical and Applied Genetics. 1993;85(6-7):673-680. DOI: 10.1007/BF00225004

9. Ford B.A., Foo E., Sharwood R., Karafiatova M., Vrána J., MacMillan C. et al. Rht18 semidwarfism in wheat is due to increased GA2-oxidaseA9 expression and reduced GA content. Plant Physiology. 2018;177(1):168-180. DOI: 10.1104/pp.18.00023

10. Ganal M., Röder M.S. Microsatellite and SNP markers in wheat breeding. In: R.K. Varshney, R. Tuberosa (eds). Genomics-Assisted Crop Improvement. Vol. 2. Genomics Applications in Crops. Dordrecht: Springer; 2007. p.1-24. DOI: 10.1007/978-1-4020-6297-1_1

11. Glagoleva A.Y., Shmakov N.A., Shoeva O.Y., Vasiliev G.V., Shatskaya N.V., Börner A. et al. Metabolic pathways and genes identified by RNA-seq analysis of barley near-isogenic lines differing by allelic state of the Black lemma and pericarp (Blp) gene. BMC Plant Biology. 2017;17 Suppl 1:182. DOI: 10.1186/s12870-017-1124-1

12. Glagoleva A.Y., Shoeva O.Y., Khlestkina E.K. Structural and functional divergence of homoeologous genes in allopolyploid plant genomes. Vavilov Journal of Genetics and Breed­ ing. 2016;20(6):823-831. [in Russian] DOI: 10.18699/VJ16.204

13. Goodsell D. Molecule of the month: Antifreeze proteins. RCSB PDB Protein Data Bank; 2009. DOI: 10.2210/rcsb_pdb/mom_2009_12

14. Gostimsky S.A., Kokaeva Z.G., Konovalov F.A. Studying plant genome variation using molecular markers. Russian Jour­ nal of Genetics. 2005;41(4):378-388. [in Russian] DOI: 10.1007/s11177-005-0101-1

15. Hu J., Anderson B., Wessler S.R. Isolation and characterization of rice R genes: Evidence for distinct evolutionary paths in rice and maize. Genetics. 1996;142(3):1021-1031. DOI: 10.1093/genetics/142.3.1021

16. IWGSC; Appels R., Eversole K., Stein N., Feuillet C., Keller B. et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361(6403):7181. DOI: 10.1126/science.aar7191

17. Jia Q., Zhang J., Westcott S., Zhang X.Q., Bellgard M., Lance R. et al. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Functional and Integrative Genomics. 2009;9(2):255-262. DOI: 10.1007/s10142-009-0120-4

18. Jørgensen J.H. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica. 1992;63(1-2):141-152. DOI: 10.1007/BF00023919

19. Khlestkina E.K. Regulatory-target gene relationships in allopolyploid and hybrid genomes. In: K.V. Urbano (ed.). Advances in Genetics Research. Vol. 3. Hauppauge, NY: NOVA Science Publishers, Inc.; 2010. р.311-328.

20. Khlestkina E.K., Röder M.S., Börner A. Mapping genes controlling anthocyanin pigmentation on the glume and pericarp in tetraploid wheat (Triticum durum L.). Euphytica. 2010;171(1):65-69. DOI: 10.1007/s10681-009-9994-4

21. Khlestkina E.K., Salina E.A., Pshenichnikova T.A., Röder M.S., Börner A. Glume coloration in wheat: Allelism test, consensus mapping and its association with specific microsatellite allele. Cereal Research Communications. 2009;37(1):37-43. DOI: 10.1556/CRC.37.2009.1.5

22. Khlestkina E.K., Shvachko N.A., Zavarzin A.A., Börner A. Vavilov’s series of “green revolution” genes. Russian Jour­ nal of Genetics. 2020;56(11):1371-1380. DOI: 10.1134/s1022795420110046

23. Koller O.L., Zeller F.J. The homoeologous relationships of rye chromosomes 4R and 7R with wheat chromosomes. Genetics Research. 1976;28(2):177-188. DOI: 10.1017/s0016672300016852

24. Korotkova A.M., Gerasimova S.V., Khlestkina E.K. Current achievements in modifying crop genes using CRISPR/ Cas system. Vavilov Journal of Genetics and Breeding. 2019;23(1):29-37. DOI: 10.18699/VJ19.458

25. Korotkova A.M., Gerasimova S.V., Shumny V.K., Khlestkina E.K. Crop genes modified using CRISPR/CAS system. Vavi­ lov Journal of Genetics and Breeding. 2017;21(2):250-258. [in Russian] DOI: 10.18699/VJ17.244

26. Korzun V., Roder M.S., Wendehake K., Pasqualone A., Lotti C., Ganal M.W. et al. Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theoretical and Applied Genetics. 1999;98:1202-1207. DOI: 10.1007/s001220051185

27. Kuluev B.R., Mikhailova E.V., Kuluev A.R., Galimova A.A., Zaikina E.A., Khlestkina E.K. Genome editing in species of the tribe Triticeae with the CRISPR/Cas system. Molecu­ lar Biology. 2022;56(6):949-968. [in Russian] DOI: 10.31857/S0026898422060155

28. Levitsky G.A. The progress of genetical cytology and its application to cultivated plants. In: The Recent Attainments and Prospects in the Domain of Applied Botany, Genetics and Plant Breeding. Leningrad; 1929. p.87-98. [in Russian]

29. Levitsky G.A., Kuzmina N.E. Karyological investigations on the systematics and phylogenetics of the genus Festuca. Proceedings on Applied Botany, Genetics and Breeding. 1927;17(3):3-36. [in Russian]

30. Lewitsкy G.A. Review of investigations performed at the Cytological Laboratory of the Institute of Plant-Industry in USSR (former Inst. of Applied Botany & New Cultures), 1927–1930. Proceedings on Applied Botany, Genetics and Breeding. 1931;27(1):9-17. [in Russian]

31. Lewitzky G.A. The karyotypes of some pairs of related forms of plants. Botanicheskii zhurnal = Botanical Journal. 1940;25(4-5):292-296. [in Russian] (Левитский Г.А. Кариотипы некоторых пар родственных форм растений. Ботанический журнал. 1940;25(4-5):292-296).

32. Li B., Jia Y., Xu L., Zhang S., Long Z., Wang R. et al. Transcriptional convergence after repeated duplication of an amino acid transporter gene leads to the independent emergence of the black husk/pericarp trait in barley and rice. Plant Biotechnology Journal. 2024;22(5):1282-1298. DOI: 10.1111/pbi.14264

33. Li M., Li X., Zhou Z., Wu P., Fang M., Pan X. et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in Plant Sci­ ence. 2016;7:377. DOI: 10.3389/fpls.2016.0037

34. Li Z., Liu Z.B., Xing A., Moon B.P., Koellhoffer J.P., Huang L. et al. Cas9-guide RNA directed genome editing in soybean. Plant Physiology. 2015;169(2):960-970. DOI: 10.1104/pp.15.00783

35. Malnoy M., Viola R., Jung M.H., Koo O.J., Kim S., Kim J.S. et al. DNA-Free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science. 2016;7:1904. DOI: 10.3389/fpls.2016.01904

36. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat: [website]. Available from: http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp [accessed Jun. 06, 2025].

37. Naranjo T., Fernández-Rueda P. Homoeology of rye chromosome arms to wheat. Theoretical and Applied Genetics. 1991;82(5):577-586. DOI: 10.1007/BF00226793

38. Naranjo T., Roca A., Goicoechea P.G., Giraldez R. Arm homoeology of wheat and rye chromosomes. Genome. 1987;29(6):873-882. DOI: 10.1139/g87-149

39. Nekrasov V., Wang C., Win J., Lanz C., Weigel D., Kamoun S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports. 2017;7(1):482. DOI: 10.1038/s41598-017-00578-x

40. Paterson A.H., Wing R.A. Genome mapping in plants. Current Opinion in Biotechnology. 1993;4(2):142-147. DOI: 10.1016/0958-1669(93)90114-C

41. Pont C., Murat F., Confolent C., Balzergue S., Salse J. RNA-seq in grain unveils fate of neoand paleopolyploidization events in bread wheat (Triticum aestivum L.). Genome Biology. 2011;12(12):R119. DOI: 10.1186/gb-2011-12-12-r119

42. Rabanus-Wallace M.T., Hackauf B., Mascher M., Lux T., Wicker T., Gundlach H. et al. Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nature Genetics. 2021;53(4):564-573. DOI: 10.1038/s41588-021-00807-0

43. Salina E.A., Leonova I.N., Efremova T.T., Röder M.S. Wheat genome structure: translocations during the course of polyploidization. Functional and Integrative Genomics. 2006;6(1):71-80. DOI: 10.1007/s10142-005-0001-4

44. Salse J., Abrouk M., Bolot S., Guilhot N., Courcelle E., Faraut T. et al. Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(35):14908-14913. DOI: 10.1073/pnas.0902350106

45. Semilet T., Shvachko N., Smirnova N., Shipilina L., Khlestkina E. Using DNA markers to reconstruct the lifetime morphology of barley grains from carbonized cereal crop remains unearthed at Usvyaty Settlement. Biological Communica­ tions. 2023;68(1):3-9. DOI: 10.21638/spbu03.2023.101

46. Semilet T.V., Smirnova N.V., Shvachko N.A., Kovaleva O.N., Khlestkina E.K. Restoration of the spike architectonics in ancient barley excavated at the twelfth-century settlement of Usvyaty. Proceedings on Applied Botany, Genetics and Breeding. 2024;185(3):199-209. [in Russian] DOI: 10.30901/22278834-2024-3-199-209

47. Shibaike H. Molecular genetic mapping and plant evolutionary biology. Journal of Plant Research. 1998;111:383-388. DOI: 10.1007/BF02507802

48. Shoeva O.Yu., Mursalimov S.R., Gracheva N.V., Glagoleva A.Y., Börner A., Khlestkina E.K. Melanin formation in barley grain occurs within plastids of pericarp and husk cells. Scientific Reports. 2020;10(1):179. DOI: 10.1038/s41598019-56982-y

49. Sun L., Yang W., Li Y., Shan Q., Ye X., Wang D. et al. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. The Plant Journal. 2019;97(5):887-900. DOI: 10.1111/tpj.14168

50. Sun S., Wang J., Yu J., Meng F., Xia R., Wang L. et al. Alignment of common wheat and other grass genomes establishes a comparative genomics research platform. Frontiers in Plant Science. 2017;8:1480. DOI: 10.3389/fpls.2017.01480

51. Sun Y., Zhang X., Wu C., He Y., Ma Y., Hou H. et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9mediated homologous recombination of acetolactate synthase. Molecular Plant. 2016;9(4):628-631. DOI: 10.1016/j.molp.2016.01.001

52. Svitashev S., Young J.K., Schwartz C., Gao H., Falco S.C., Cigan A.M. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology. 2015;169(2):931-945. DOI: 10.1104/pp.15.00793

53. Ukhatova Y.V., Erastenkova M.V., Korshikova E.S., Krylova E.A., Mikhailova A.S., Semilet T.V. et al. Improvement of crops using the CRISPR/Cas system: new target genes. Molecu­ lar Biology. 2023;57(3):387-410. [in Russian] DOI: 10.31857/S0026898423030151

54. Van Deynze A.E., Nelson J.C., Sorrells M.E., McCouch S.R., Dubovsky J., Dvorák J. et al. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome. 1995;38(1):45-59. DOI: 10.1139/g95-006

55. Vavilov N.I. The law of homological series in hereditary variation (Zakon gomologicheskikh ryadov v nasledstvennoy izmenchivosti). In: Proceedings of the III All­Russian Con­ gress on Breeding and Seed Production in Saratov on June 4–13, 1920. Issue 1 (Trudy III Vserossiyskogo syezda po selektsii i semenovodstvu v g. Saratov 4–13 iyunya 1920 g. Vyp. 1). Saratov; 1920. p.41-56. [in Russian]

56. Vavilov N.I. The law of homological series in variation. Jour­ nal of Genetics. 1922;12(1):47-89. DOI: 10.1007/BF02983073

57. Wang C., Shu Q. Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice (Oryza sativa L.). Chinese Science Bulletin. 2007;52:3097-3104. DOI: 10.1007/s11434007-0472-x

58. Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature. Biotechnology. 2014;32(9):947-951. DOI: 10.1038/nbt.2969

59. Zhang Y., Liang Z., Zong Y., Wang Y., Liu J., Chen K. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications. 2016;7:12617. DOI: 10.1038/ncomms12617

60. Zheng X., Yang S., Zhang D., Zhong Z., Tang X., Deng K. et al. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Reports. 2016;35(7):1545-1554. DOI: 10.1007/s00299-0161967-1


Review

For citations:


Khlestkina E.K. Vavilov’s law in the era of next-generation sequencing: answers, puzzles, hints. Proceedings on applied botany, genetics and breeding. 2025;186(3):187-198. (In Russ.) https://doi.org/10.30901/2227-8834-2025-3-187-198

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)