Negative effect of an introgression into chromosome 5Al of bread wheat (Triticum aestivum L.) from tetraploid wheat (Triticum timopheevii (Zhuk.) Zhuk. subsp. timopheevii) on drought tolerance and productivity
https://doi.org/10.30901/2227-8834-2025-3-102-111
Abstract
Background. Introgressive hybridization is used to increase genetic diversity and improve disease resistance in bread wheat Triticum aestivum L. Introgressions from tetraploid wheat Triticum timopheevii (Zhuk.) Zhuk. subsp. timopheevii into bread wheat ‘Saratovskaya 29’ (S29) helped to increase its resistance to fungal diseases. There is a need for thorough studies into the effect of introgressive hybridization on tolerance to abiotic stressors in wheat.
Materials and methods. Gas exchange and chlorophyll fluorescence parameters, chlorophyll a and b content, carotenoids, free proline, ascorbate-glutathione cycle enzyme activity, catalase and lipoxygenase in leaves, and shoot biomass were analyzed in wheat cultivar S29 and line S29 (821 5A) carrying a T. timopheevii subsp. timopheevii introgression segment in the distal region of chromosome 5AL, under controlled conditions with two water-supply regimes. Productivity components were assessed in a hydroponic greenhouse, also under two water-supply regimes.
Results. Compared with cv. S29, line S29 (821 5A) had a reduced amount of absorbed and transferred energy per reaction center of photosystem II under optimal watering. The line also had a 30% reduction in the activity of ascorbate-glutathione cycle enzymes and a significantly increased proline content in leaves. Line S29 (821 5A) showed weakened defense reactions to drought stress. It was inferior to cv. S29 in the main spike productivity, regardless of watering conditions.
Conclusion. Introgression from T. timopheevii subsp. timopheevii into the distal region of chromosome 5AL negatively affected the drought tolerance and productivity of bread wheat. Physiological and biochemical studies are required to make a comprehensive assessment of interspecific hybrids for their resistance to unfavorable factors.
Keywords
About the Authors
S. V. OsipovaRussian Federation
Svetlana V. Osipova, Dr. Sci. (Biology), Leading Researcher, Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences; Head of a Department, Irkutsk State University
132 Lermontova St., Irkutsk 664033
5 Sukhe-Batorа St., Irkutsk 664011
A. V. Permyakov
Russian Federation
Aleksey V. Permyakov, Cand. Sci. (Biology), Senior Researcher
132 Lermontova St., Irkutsk 664033
A. V. Rudikovskii
Russian Federation
Alexandr V. Rudikovskii, Cand. Sci. (Biology), Leading Researcher
132 Lermontova St., Irkutsk 664033
M. D. Permyakova
Russian Federation
Marina D. Permyakova, Dr. Sci. (Biology), Senior Researcher
132 Lermontova St., Irkutsk 664033
E. G. Rudikovskaya
Russian Federation
Elena G. Rudikovskaya, Cand. Sci. (Biology), Senior Researcher
132 Lermontova St., Irkutsk 664033
A. V. Pomortsev
Russian Federation
Anatolii V. Pomortsev, Cand. Sci. (Biology), Senior Researcher
132 Lermontova St., Irkutsk 664033
T. A. Pshenichnikova
Russian Federation
Tatyana A. Pshenichnikova, Cand. Sci. (Biology), Head of a Sector
10 Akademika Lavrentyeva Ave., Novosibirsk 630090
References
1. Bates L., Waldren R.P., Teare I.D. Rapid determination of free proline for water stress studies. Plant and Soil. 1973;39:205-207. DOI: 10.1007/BF00018060
2. Chakraborty P., Kumari A. Role of compatible osmolytes in plant stress tolerance under the influence of phytohormones and mineral elements. In: M.A. Ahanger, J.A. Bhat, P. Ahmad, R. John (eds). Improving Stress Resilience in Plants: Physiological and Biochemical Basis and Utilization in Breeding. Cambridge, MA: Academic Press; 2023. p.165-201. DOI: 10.1016/B978-0-443-18927-2.00011-X
3. Fan H., Xu J., Ao D., Jia T., Shi Y., Li N. et al. QTL mapping of trichome traits and analysis of candidate genes in leaves of wheat (Triticum aestivum L.). Genes (Basel). 2023;15(1):42. DOI: 10.3390/genes15010042
4. Goltsev V.N., Kalaji H.M., Paunov M., Bąba W., Horaczek T., Mojski J. et al. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology. 2016;63(6):869-893. DOI: 10.1134/S1021443716050058
5. Kabir N., Wahid S., Rehman S.U., Qanmber G. The intricate world of trichome development: From signaling pathways to transcriptional regulation. Environmental and Experimental Botany. 2024;217:105549. DOI: 10.1016/j.envexpbot.2023.105549
6. Leonova I.N., Röder M.S., Kalinina N.P., Budashkina E.B. Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum × Triticum timopheevii introgression lines. Russian Journal of Genetics. 2008;44(12):1431-1437. DOI: 10.1134/S1022795408120077
7. Leonova I.N., Shumny V.K. Development and study of the common wheat introgression lines obtained with the participation of Triticum timopheevii (Zhuk.) Zhuk. Letters to Vavilov Journal of Genetics and Breeding. 2023;9(3):111-116. [in Russian] DOI: 10.18699/LettersVJ-2023-9-14
8. Mir R.A., Khah M. K. Recent progress in enzymatic antioxidant defense system in plants against different environmental stresses. In: M.A. Ahanger, J.A. Bhat, P. Ahmad, R. John (eds). Improving Stress Resilience in Plants: Physiological and Biochemical Basis and Utilization in Breeding. Cambridge, MA: Academic Press; 2023. p. 203-224. DOI: 10.1016/B978-0-443-18927-2.00014-5
9. Osipova S.V., Rudikovskii A.V., Permyakov A.V., Rudikovskaya E.G., Pomortsev A.V., Musalevskaya O.V. et al. Using chlorophyll fluorescence parameters and antioxidant enzyme activity to assess drought tolerance of spring wheat. Photosynthetica. 2024;62(2):147-157. DOI: 10.32615/ps.2024.014
10. Panda D., Mishra S.S., Behera P.K., Lenka S.K. Role of ascorbate and ascorbate–glutathione cycle for photosynthetic protection in selected indigenous rice landraces under drought stress. Agricultural Research. 2021;10:187-192. DOI: 10.1007/s40003-020-00506-y
11. Peršić V., Ament A., Antunović Dunić J., Drezner G., Cesar V. PEG-induced physiological drought for screening winter wheat genotypes sensitivity – integrated biochemical and chlorophyll a fluorescence analysis. Frontiers in Plant Science. 2022;13:987702. DOI: 10.3389/fpls.2022.987702
12. Pflüger T., Jensen S.M., Liu F., Rosenqvist E.T. Leaf gas exchange responses to combined heat and drought stress in wheat genotypes with varied stomatal density. Environmental and Experimental Botany. 2024;228(Pt A):105984. DOI: 10.1016/j.envexpbot.2024.105984
13. Pshenichnikova T.A., Doroshkov A.V., Osipova S.V., Permyakov A.V., Permyakova M.D., Efimov V.M. et al. Quantitative characteristics of pubescence in wheat (Triticum aestivum L.) are associated with the parameters of gas exchange and chlorophyll fluorescence under conditions of normal and limited water supply. Planta. 2019;249(3):839-847. DOI: 10.1007/s00425-018-3049-9
14. Shchukina L.V., Simonov A.V., Demenkova M.A., Klykov A.G., Shamanin V.P., Pozherukova V.E. et al. Increased grain protein and gluten contents of bread wheat caused by introgression of a T. timopheevii segment into chromosome 2A. Euphytica. 2022;218(12):170. DOI: 10.1007/s10681-022-03121-w
15. Simonov A.V., Smirnova O.G., Genaev M.A., Pshenichnikova T.A. The identification of a new gene for leaf pubescence introgressed into bread wheat from Triticum timopheevii Zhuk. and its manifestation in a different genotypic background. Plant Genetic Resources: Characterization and Utilization. 2021;19(3):238-244. DOI: 10.1017/S1479262121000277
16. Smirnova O.G., Pshenichnikova T.A. The relationship between the genetic status of the Vrn-1 locus and the size of the root system in bread wheat (Triticum aestivum L.). Vavilov Journal of Genetics and Breeding. 2021;25(8):805-811. DOI: 10.18699/VJ21.093
17. Viswanath K.K., Varakumar P., Pamuru R.R., Basha S.J., Mehta S., Rao A.D. Plant lipoxygenases and their role in plant physiology. Journal of Plant Biology. 2020;63(2):83-95. DOI: 10.1007/s12374-020-09241-x
18. Walkowiak S., Gao L., Monat C., Haberer G., Kassa M.T., Brinton J. et al. Multiple wheat genomes reveal global variation in modern breeding. Nature. 2020;588(7837):277-283. DOI: 10.1038/s41586-020-2961-x
19.
Review
For citations:
Osipova S.V., Permyakov A.V., Rudikovskii A.V., Permyakova M.D., Rudikovskaya E.G., Pomortsev A.V., Pshenichnikova T.A. Negative effect of an introgression into chromosome 5Al of bread wheat (Triticum aestivum L.) from tetraploid wheat (Triticum timopheevii (Zhuk.) Zhuk. subsp. timopheevii) on drought tolerance and productivity. Proceedings on applied botany, genetics and breeding. 2025;186(3):102-111. (In Russ.) https://doi.org/10.30901/2227-8834-2025-3-102-111