Development of highly informative microsatellite markers for the genetic analysis of sunflower
Abstract
Background. The existing microsatellite loci markers, used for studying and identifying sunflower genetic diversity, have certain limitations. There is a need for new markers that will meet the following criteria: three or more nucleotides in the microsatellite motif, specificity to the target locus, and high discriminatory power.
Materials and methods. Microsatellite loci were mined using the GMATA software based on the reference genome assembly of sunflower HanXRQr2.0-SUNRISE. Loci with flanking regions were screened for the presence of copies on other chromosomes using Nucleotide BLAST, and primer pairs were designed using Primer-BLAST (NCBI). The expected polymorphism of each microsatellite locus was evaluated by aligning the predicted PCR product to other sunflower genome assemblies from the GenBank database using Nucleotide BLAST. The performance of the developed markers was tested by PCR and separation of amplification products by capillary electrophoresis under denaturing conditions.
Results. A total of 186 markers were developed. Of these, 16 were characterized by nonspecific amplification, 31 showed complete absence of amplification, 26 revealed SSR-specific artifacts, and 19 were monomorphic. The remaining 94 markers were informative and detected from 2 to 6 alleles. Among the selected sequences, simple microsatellites with trinucleotide motifs were the most prevalent. The number of markers per chromosome ranged from 2 to 19. The size range of the amplified DNA fragments was from 125 to 469 bp. A statistically significant correlation was found between the number of repeats in the microsatellite locus and the number of detected alleles.
Conclusion. The obtained data make it possible to select the most informative markers for the development of multiplex SSR assays and the establishment of an effective genotyping system for sunflower.
About the Authors
S. Z. GuchetlRussian Federation
Saida Z. Guchetl, Cand. Sci. (Biology), Head of a Laboratory
17 Filatova St., Krasnodar 350038, Russia
A. V. Golovatskaya
Russian Federation
Anna V. Golovatskaya, Associate Researcher
17 Filatova St., Krasnodar 350038, Russia
D. L. Savichenko
Russian Federation
Dmitrii L. Savichenko, Researcher
17 Filatova St., Krasnodar 350038, Russia
E. D. Loginova
Russian Federation
Elizaveta D. Loginova, Associate Researcher
17 Filatova St., Krasnodar 350038, Russia
E. I. Zhudina
Russian Federation
Elvina I. Zhudina, Analyst
17 Filatova St., Krasnodar 350038, Russia
References
1. Ahmed H.G.M.D., Rizwan M., Naeem M., Khan M.A., Baloch F.S., Sun S. et al. Molecular characterization and validation of sunflower (Helianthus annuus L.) hybrids through SSR markers. PLoS One. 2022;17(5):e0267383. DOI: 10.1371/journal.pone.0267383
2. Ascunce M.S., Toups M.A., Kassu G., Fane J., Scholl K., Reed D.L. Nuclear genetic diversity in human lice (Pediculus humanus) reveals continental differences and high inbreeding among worldwide populations. PLoS One. 2013;8(2):e57619. DOI:10.1371/journal.pone.0057619
3. Avvaru A.K., Sharma D., Verma A., Mishra R.K., Sowpati D.T. MSDB: a comprehensive, annotated database of microsatellites. Nucleic Acids Research. 2020;48(D1):D155-D159. DOI: 10.1093/nar/gkz886
4. Brunel D. A microsatellite marker in Helianthus annuus L. Plant Molecular Biology. 1994;24(2):397-400. DOI: 10.1007/BF00020177
5. Buchan J.C., Archie E.A., Van Horn R.C., Moss C.J., Alberts S.C. Locus effects and sources of error in noninvasive genotyping. Molecular Ecology Notes. 2005;5(3):680-683. DOI: 10.1111/j.1471-8286.2005.01002.x
6. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K. et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. DOI: 10.1186/1471-2105-10-421
7. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York, NY: Routledge; 1988. DOI: 10.4324/9780203771587
8. Fallah M., Paizila A., Karcı H., Arab M.M., Sarikhani S., Suprun I. et al. Validation and implementation of marker-assisted selection (MAS) for the leafing date trait in Persian walnut populations from Iran. Euphytica. 2024;220(2):25. DOI: 10.1007/s10681-023-03281-3
9. Filippi C., Aguirre N., Rivas J.G., Zubrzycki J., Puebla A., Cordes D. et al. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biology. 2015;15:52. DOI: 10.1186/s12870-014-0360-x
10. Golovatskaya А.V., Guchetl S.Z. Assessment of the genetic diversity of sunflower lines of VNIIMK breeding based on multiplex microsatellite analysis. Agrarian Science. 2024;(11):117-121. [in Russian]. DOI: 10.32634/0869-8155-2024-388-11-117-121
11. Golovatskaya А.V., Guchetl S.Z. Screening of microsatellite DNA markers for effective sunflower identification. Fodder Production. 2023;(11):48-51. [in Russian]. DOI: 10.25685/krm.2023.11.2023.007
12. Golovatskaya А.V., Guchetl S.Z., Savichenko D.L., Loginova E.D., Zhudina E.I. Database of microsatellite DNA markers of sunflower (Helianthus annuus L.). Russian Federation; database state registration certificate number: 2025622192; 2025. [in Russian]. URL: https://vniimk.ru/science/bazy-dannykh-i-programmy-dlya-evm/ljrevtyns-2 [дата обращения: 22.06.2024].
13. Guchetl S.Z., Golovatskaya А.V., Ramazanova S.А., Voloshko А.А. Genetic diversity of the Russian sunflower breeding lines revealed by microsatellite loci analysis. Agricultural Science Euro-North-East. 2023;24(2):173-186. [in Russian]. DOI: 10.30766/2072-9081.2023.24.2.173-186
14. Guichoux E., Lagache L., Wagner S., Chaumeil P., Léger P., Lepais O. et al. Current trends in microsatellite genotyping. Molecular Ecology Resources. 2011;11(4):591-611. DOI: 10.1111/j.1755-0998.2011.03014.x
15. Hoffman J.I., Amos W. Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Molecular Ecology. 2005;14(2):599-612. DOI: 10.1111/j.1365-294X.2004.02419.x
16. Liu C., Zhao N., Jiang Z.C., Zhang H., Zhai H., He S.Z. et al. Analysis of genetic diversity and population structure in sweetpotato using SSR markers. Journal of Integrative Agriculture. 2023;22(11):3408-3415. DOI: 10.1016/j.jia.2023.02.004
17. Mason A.S. SSR genotyping. In: J. Batley (ed.). Methods in Molecular Biology. Vol. 1245. Plant Genotyping. New York, NY: Humana Press; 2015. p.77-89. DOI: 10.1007/978-1-4939-1966-6_6
18. NIH. National Library of Medicine. National Center for Biotechnology Information: [website]. Available from: https://www.ncbi.nlm.nih.gov [accessed Mar. 25, 2025].
19. NIH. National Library of Medicine. National Center for Biotechnology Information. Primer-BLAST: A tool for finding specific primers: [website]. Available from: https://www.ncbi.nlm.nih.gov/tools/primer-blast [accessed Mar. 25, 2025].
20. Paniego N., Echaide M., Muñoz M., Fernández L., Torales S., Faccio P. et al. Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome. 2002;45(1):34-43. DOI: 10.1139/g01-120
21. Ramazanova S.A., Badyanov E.V., Guchetl S.Z. Validation of microsatellite markers to identify Pl6, Pl8 and Plarg genes that control resistance to Plasmopara halstedii in sunflower. Caspian Journal of Environmental Sciences. 2021;19(5):915-920. DOI: 10.22124/CJES.2021.5266
22. Ramya K.T., Vishnuvardhan Reddy A., Sujatha M. Agromorphological and molecular analysis discloses wide genetic variability in sunflower breeding lines from USDA, USA. Indian Journal of Genetics and Plant Breeding. 2019;79(2):444-452. DOI: 10.31742/IJGPB.79.2.8
23. Sheller M.A., Ciocirlan E., Mikhailov P.V., Kulakov S.S., Kulakova N.N., Ibe A.A. et al. Genetic diversity of scots pine (P. sylvestris L.) in middle Siberia assessed by analysis of variability of chloroplast microsatellite loci. Biosfera. Interdisciplinary Journal of Basic and Applied Sciences. 2023;15(4):343-348. [in Russian]. DOI: 10.24855/biosfera.v15i4.868
24. Shilov I.A., Velishaeva N.S., Aniskina Yu.V., Kolobova O.S., Shalaeva T.V., Borisenko O.M. et al. Genetic identification of Helianthus annuus L. sunflower lines and hybrids based on multiplex microsatellite analysis. Achievements of Science and Technology of AIC. 2023;37(1):10-15. [in Russian]. DOI: 10.53859/02352451_2023_37_1_10
25. Tang S., Yu J.K., Slabaugh B., Shintani D.K., Knapp S.J. Simple sequence repeat map of the sunflower genome. Theoretical and Applied Genetics. 2002;105(8):1124-1136. DOI: 10.1007/s00122-002-0989-y
26. The R Project for Statistical Computing: [website]. Available from: https://www.r-project.org [accessed Mar. 25, 2025].
27. Topu M., Sesiz U., Bektaş H., Toklu F., Özkan H. Next-generation-sequencing-based simple sequence repeat (SSR) marker development and linkage mapping in lentil (Lens culinaris L.). Life (Basel). 2023;13(7):1579. DOI: 10.3390/life13071579
28. Verbiest M., Maksimov M., Jin Y., Anisimova M., Gymrek M., Bilgin S.T. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. Journal of Evolutionary Biology. 2023;36(2):321-336. DOI: 10.1111/jeb.14106
29. Wang X., Wang L. GMATA: an integrated software package for genome-scale SSR mining, marker development and viewing. Frontiers in Plant Science. 2016;7:1350. DOI: 10.3389/fpls.2016.01350
30. Wickham H. ggplot2: Elegant graphics for data analysis. New York, NY: Springer-Verlag; 2016. DOI: 10.1007/978-0-387-98141-3
31. Yadav S., Carvalho J., Trujillo I., Prado M. Microsatellite markers in olives (Olea europaea L.): Utility in the cataloging of germplasm, food authenticity and traceability studies. Foods. 2021;10(8):1907. DOI: 10.3390/foods10081907
Supplementary files
Review
For citations:
Guchetl S.Z., Golovatskaya A.V., Savichenko D.L., Loginova E.D., Zhudina E.I. Development of highly informative microsatellite markers for the genetic analysis of sunflower. Proceedings on applied botany, genetics and breeding.






























