Mineral composition of the fruit of strawberry cultivars under the conditions of Sverdlovsk Province
https://doi.org/10.30901/2227-8834-2025-2-47-56
Abstract
Background. Growing requirements on new strawberry cultivars for higher nutritional value of their fruits call for a comprehensive evaluation of their assortment in each berry-growing zone.
Materials and methods. Berries of 6 garden strawberry cultivars and 1 hybrid cultivar obtained from crossing garden and wild strawberries, all of them midseason and developed domestically, were studied at Sverdlovsk Breeding Station of Horticulture, Yekaterinburg. Their mineral composition was analyzed using the method of inductively coupled plasma atomic emission spectroscopy (ICP-AES).
Results. Twenty-three macro- and micronutrients were found in the berries. Most of them were observed in all fruits (in descending order of their content): K > P > Ca > Mg > Si > Fe > Na ≥ Mn > Ba > B > Sr ≥ Zn > Cu > Ti > Ni > Cr > Mo. The selective accumulation ability was specified for Al, Cd, Co, Pb, Se, and V. There were no significant differences among the cultivars in meeting human needs for essential macronutrients when consuming a serving of berries. Correlations among the nutrients in berries were established.
Conclusion. Cv. ‘Torpeda’ demonstrated predominant accumulation of essential and conditionally essential micronutrients (Cr, V, Co, Fe, Mn, and Si), and cv. ‘Akvarel’ stood out for accumulation of Cr, V, Co, Fe, and Mo. Both are recommended to strawberry breeders who seek improvement of the mineral composition in strawberry fruits to produce on their basis specialized food products. Cv. ‘Italmas’ was identified as a genetic source of Mo, and cv. ‘Kupchikha’ as a source of Co.
About the Authors
N. L. NaumovaRussian Federation
Natalya L. Naumova, Dr. Sci. (Engineering), Leading Researcher
112a Belinskogo St., Yekaterinburg 620142
T. N. Slepneva
Russian Federation
Tatyana N. Slepneva, Researcher
112a Belinskogo St., Yekaterinburg 620142
O. A. Pavlova
Russian Federation
Olga A. Pavlova, Associate Researcher
112a Belinskogo St., Yekaterinburg 620142
References
1. Aihemaiti A., Gao Y., Meng Y., Chen X., Liu J., Xiang H. et al. Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. The Science of the Total Environment. 2019;712:135637. DOI: 10.1016/j.scitotenv.2019.135637
2. Akanova N.I., Kozlova A.V., Mukhina M.T. Magnesium role in plant nutrition system. Agrochemical Herald. 2021;(6):66- 72. [in Russian] DOI: 10.24412/1029-2551-2021-6-014
3. Akimov M.Yu., Zhbanova E.V., Makarov V.N., Perova I.B., Shevyakova L.V., Vrzhesinskaya O.A. et al. Nutrient value of fruit in promising strawberry varieties. Problems of Nutrition. 2019;88(2):64-72. [in Russian] DOI: 10.24411/0042-8833-2019-10019
4. Ambros E.V., Krupovich E.S., Kolmogorov Yu.P., Trofimova E.G., Gusev I.S., Goldenberg B.G. Modulation of growth and chemical element accumulation in Fragaria × ananassa plants in vivo under the effect of silicon chelates. Proceedings of Universities. Applied Chemistry and Biotechnology. 2023;13(4):494-505. [in Russian] DOI: 10.21285/2227-2925-2023-13-4-494-505
5. Bagryantseva O.V., Shatrov G.N., Khotimchenko S.A., Bessonov V.V., Arnautov O.V. Aluminium: food-related health risk assessment of the consumers. Health Risk Analysis. 2016;(1):49-57.
6. Bobkova V.V., Konovalov S.N. Regularities of accumulation of heavy metals by strawberry (Fragaria × ananassa Duch.) plants from soddy-podzoly soil using adsorbents based on mineral and polymeric substances. Pomiculture and Small Fruits Culture in Russia. 2020;62:152-164. [in Russian] DOI: 10.31676/2073-4948-2020-62-152-164
7. Cunha M.L.O., de Mello Prado R. Synergy of selenium and silicon to mitigate abiotic stresses: a review. Gesunde Pflanzen. 2023;75(14):1461-1474. DOI: 10.1007/s10343-022-00826-9
8. Dubynina S.S. The accumulation of trace elements in the aboveground mass of plant life forms in the geosystems of the Onon-Argun steppe. Geographical Bulletin. 2022;2(61):109-122. [in Russian] DOI: 10.17072/2079-7877-2022-2-109-122
9. Eliseeva L.G., Blinnikova O.M. Differentiation of promising fruit and berry crops’ varieties in the content of biologically active substances. Food Industry. 2013;(6):50-52. [in Russian]
10. Ermakov V.V. Strontium in the biosphere (Strontsiy v biosphere). Novosibirsk: Akademizdat; 2023. [in Russian]
11. European Food Safety Authority (EFSA). Dietary exposure to aluminium-containing food additives. Technical report. EFSA Supporting Publications. 2013;10(4):411E. DOI: 10.2903/sp.efsa.2013.EN-411
12. Kabata-Pendias A. Trace elements in soils and plants. 4th ed. Boca Raton, FL: CRC Press; 2010. DOI: 10.1201/b10158
13. Kaznina N.M., Titov A.F. The influence of cadmium on physiological processes and productivity of Poaceae plants. Advances in Current Biology. 2013;133(6):588-603. [in Russian]
14. Khalil N.H., Hammoodi J.K. Effect of nitrogen, potassium and calcium in strawberry fruit quality. International Journal of Agricultural and Statistical Sciences. 2020;16 Suppl 1:1967-1972.
15. Kouam I.D., Moungang S., Koulagna H.I., Ntsoli G.P., Titti R.W., Yaouba A. Influence of organic and mineral fertilizers and a foliar biostimulant on the yield and nutritional quality of strawberries (Fragaria × ananassa Duch.) under field conditions. Biochemical Systematics and Ecology. 2024;117:104917. DOI: 10.1016/j.bse.2024.104917
16. Lambers H. Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology. 2022;73:17-42. DOI: 10.1146/annurev-arplant-102720-125738
17. Lange B., Delhaye G., Boisson S., Verbruggen N., Meerts P., Faucon M.P. Variation in copper and cobalt tolerance and accumulation among six populations of the facultative metallophyte Anisopappus chinensis (Asteraceae). Environmental and Experimental Botany. 2018;153:1-9. DOI: 10.1016/j.envexpbot.2018.04.009
18. Lyu S., Wei X., Chen J., Wang C., Wang X., Pan D. Titanium as a beneficial element for crop production. Plant Science. 2017;8:597. DOI: 10.3389/fpls.2017.00597 Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. International Review of Cytology. 2000;200:1-46. DOI: 10.1016/S0074-7696(00)00001-2
19. Montina I.M., Kolesov A.V. The role of mineral nutrition in plant life. Problemy sovremennoy nauki i innovatsii = Problems of Modern Science and Innovations. 2023;(3):12-17. [in Russian]
20. MR 2.3.1.0253-21 Guidelines “Norms of physiological requirements for energy and nutrients in various groups of the population of the Russian Federation (Normy fiziologicheskikh potrebnostey v energii i pishchevykh veshchestvakh dlya razlichnykh grupp naseleniya Rossiyskoy Federatsii)”. Moscow: Federal Service for the Oversight of Consumer Protection and Welfare; 2021. [in Russian]
21. MR 2.3.1.1915-04 Guidelines “Recommended levels of consumption of dietary and bioactive compounds (Rekomenduyemye urovni potrebleniya pishchevykh i biologicheski aktivnykh veshchestv)”. Moscow: Federal Service for the Oversight of Consumer Protection and Welfare; 2004). [in Russian]
22. MUK 4.1.1482-03, MUK 4.1.1483-03 Guidelines “Determination of chemical elements in biological environments and preparations by methods of atomic emission spectrometry with inductively coupled plasma and mass spectrometry with inductively coupled plasma (Opredeleniye khimicheskikh elementov v biologicheskikh sredakh i preparatakh metodami atomno-emissionnoy spektrometrii s induktivno svyazannoy plazmoy i mass-spektrometrii s induktivno svyazannoy plazmoy)”. Moscow: Russian Ministry of Health; 2003. [in Russian]
23. Mukailov M.D., Ulchibekova N.A., Kurbanov M.S. Changes in the chemical composition of strawberry (Fragaria ananassa L.) at low-temperature freezing and storage. Izvestiya of Timiryazev Agricultural Academy. 2017;(2):118-125. [in Russian]
24. Preciado-Rangel P., Troyo-Diéguez E., Valdez-Aguilar L.A., García-Hernández J.L., Luna-Ortega J.G. Interactive effects of the potassium and nitrogen relationship on yield and quality of strawberry grown under soilless conditions. Plants (Basel). 2020;9(4):441. DOI: 10.3390/plants9040441
25. Prichko T.G., Yakovenko V.V., Germanova M.G. Varietal differences in the chemical composition of strawberry fruits in Krasnodar Territory (Sortovye razlishiya khimicheskogo sostave yagod zemlyaniki Krasnodarskogo kraya). Pomiculture and Small Fruits Culture in Russia. 2011;27:209-219. [in Russian]
26. Rebrov V.G., Gromova O.A. Vitamins, macro- and micronutrients (Vitaminy, makro- i mikroelementy). Moscow: GEOTAR- Media; 2008. [in Russian]
27. Reutina S.V. The role of chromium in the person’s organism. RUDN Journal of Ecology and Life Safety. 2009;(4):50-55. [in Russian]
28. Ścibior A., Pietrzyk Ł., Plewa Z., Skiba A. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multiapplications with a summary of further research trends. Journal of Trace Elements in Medicine and Biology. 2020;61:126508. DOI: 10.1016/j.jtemb.2020.126508
29. Singh A., Singh B.K., Brajendra A.N., Deka B.C. Studies on the variability, inheritance, and inter-relationships of mineral macro-nutrients and micro-nutrients in strawberry (Fragaria × ananassa Duch.). The Journal of Horticultural Science and Biotechnology. 2010;85(6):551-555. DOI: 10.1080/14620316.2010.11512713
30. Suslikov V.L. Geochemical ecology of diseases. Vol. 3. Atomovitoses (Geokhimicheskaya ekologiya bolezney. T. 3. Atomovitozy). Moscow: Gelios ARV; 2002. [in Russian]
31. ТR TS 021/2011. Technical Regulations of the Customs Union. On food safety (as amended on April 22, 2024). Moscow: Commission of the Customs Union; 2024. [in Russian] URL: https://docs.cntd.ru/document/902320560 [дата обращения: 15.01.2025]
Review
For citations:
Naumova N.L., Slepneva T.N., Pavlova O.A. Mineral composition of the fruit of strawberry cultivars under the conditions of Sverdlovsk Province. Proceedings on applied botany, genetics and breeding. 2025;186(2):47-56. (In Russ.) https://doi.org/10.30901/2227-8834-2025-2-47-56