The effect of bacterial seed inoculation on agronomic characteristics of chickpea
Abstract
Background. The use of biofertilizers can be an eco-friendly method and, in addition to reducing chemical inputs, can be considered a climate-smart agricultural option in semiarid regions.
Materials and methods. A field trial was aimed to investigate the effect of biofertilizers (F1: control, F2: Nitroxin, F3: Mesorhizobium, and F4: PhosphoBARVAR) on the growth of chickpea genotypes (G1: ILC-482, G2: ‘Pirouz’, and G3: ‘Jam’) in the Meshginshahr area, Iran.
Results. The highest longitudinal growth was recorded with the use of different biofertilizers (F) in G1. The lateral growth and number of secondary branches were higher in G2 + F2 than in the others. The highest aboveground biomass was obtained in G1 + F1 and G1 + F4. Inoculation with Mesorhizobium resulted in the highest number of root nodules in G2 and G3. The application of Mesorhizobium also increased the number of pods. The highest grain yield was obtained in G1+F3 (1.43 t ha–1), and G1 + F2 (1.35 t ha–1).
Conclusion. The response of genotypes to bacterial inoculations was different. The weakest growth performance and grain yield production was recorded in G1 without bacterial inoculation. The results showed that the ILC-482 line along with inoculation with Mesorhizobium produced economically acceptable grain yield.
About the Authors
M. JanmohammadiIslamic Republic of Iran
Mohsen Janmohammadi, PhD, Professor, University of Maragheh
Amirkabir Hwy., Maragheh 83111-55181, Iran
A. Ebadi-Segherloo
Islamic Republic of Iran
Asghar Ebadi-Segherloo, PhD, Associate Professor, University of Mohaghegh Ardabili
Daneshgah Hwy., Ardabil, 56199-13131, Iran
N. Sabaghnia
Islamic Republic of Iran
Naser Sabaghnia, PhD, Professor, University of Maragheh
Amirkabir Hwy., Maragheh 83111-55181, Iran
M. Mohebodini
Islamic Republic of Iran
Mehdi Mohebodini, PhD, Professor, University of Mohaghegh Ardabili
Daneshgah Hwy., Ardabil, 56199-13131, Iran
References
1. Abd-Alla M.H., Al-Amri S.M., El-Enany A.W.E. Enhancing Rhizobium–legume symbiosis and reducing nitrogen fertilizer use are potential options for mitigating climate change. Agriculture. 2023;13(11):2092. DOI: 10.3390/agriculture13112092
2. Brambilla S., Stritzler M., Soto G., Ayub N. A synthesis of functional contributions of rhizobacteria to growth promotion in diverse crops. Rhizosphere. 2022;24(1):100611. DOI: 10.1016/j.rhisph.2022.100611
3. El-Saadony M.T., Saad A.M., Mohammed D.M., Fahmy M.A., Elesawi I.E., Ahmed A.E. et al. Drought-tolerant plant growth-promoting rhizobacteria alleviate drought stress and enhance soil health for sustainable agriculture: A comprehensive review. Plant Stress. 2024;10(6):100632. DOI: 10.1016/j.stress.2024.100632
4. FAOSTAT. Food and Agriculture Organization of the United Nations. Food and Agriculture Data: [website]. Available from: https://www.fao.org/faostat/en/#data/QCL [accessed May 15, 2025].
5. Figiel S., Rusek P., Ryszko U., Brodowska M.S. Microbially enhanced biofertilizers: technologies, mechanisms of action, and agricultural applications. Agronomy. 2025;15(5):1191. DOI: 10.3390/agronomy15051191
6. Fukami J., Cerezini P., Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express. 2018;8(1):73. DOI: 10.1186/s13568-018-0608-1
7. Khoso M.A., Wagan S., Alam I., Hussain A., Ali Q., Saha S. et al. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress. 2024;11(1):100341. DOI: 10.1016/j.stress.2023.100341
8. Koul B., Sharma K., Sehgal V., Yadav D., Mishra M., Bharadwaj C. Chickpea (Cicer arietinum L.) biology and biotechnology: From domestication to biofortification and biopharming. Plants (Basel). 2022;11(21):2926. DOI: 10.3390/plants11212926
9. Landi N., Piccolella S., Ragucci S., Faramarzi S., Clemente A., Papa S. et al. Valle Agricola chickpeas: Nutritional profile and metabolomics traits of a typical landrace legume from southern Italy. Foods. 2021;10(3):583. DOI: 10.3390/foods10030583
10. Lindström K., Mousavi S.A. Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology. 2020;13(5):1314-1335. DOI: 10.1111/1751-7915.13517
11. Madurapperumage A., Tang L., Thavarajah P., Bridges W., Shipe E., Vandemark G. et al. Chickpea (Cicer arietinum L.) as a source of essential fatty acids – A biofortification approach. Frontiers in Plant Science. 2021;12(1):734980. DOI: 10.3389/fpls.2021.734980
12. Mafakheri A., Siosemardeh A.F., Bahramnejad B., Struik P.C., Sohrabi Y. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science. 2010;4(8):580-585.
13. Mukherjee S., Nandi R., Kundu A., Bandyopadhyay P.K., Nalia A., Ghatak P. et al. Soil water stress and physiological responses of chickpea (Cicer arietinum L.) subject to tillage and irrigation management in lower Gangetic plain. Agricultural Water Management. 2022;263:107443. DOI: 10.1016/j.agwat.2021.107443
14. Nosheen S., Ajmal I., Song Y. Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability. 2021;13(4);1868. DOI: 10.3390/su13041868
15. Patrick J.W., Colyvas K. Crop yield components – photoassimilate supply- or utilisation limited-organ development? Functional Plant Biology. 2014;41(9):893-913. DOI: 10.1071/FP14048
16. Rahimi-Moghaddam S., Amiri S., Eyni-Nargeseh H. Assessing chickpea attainable yield and closing the yield gaps caused by agronomic and genetic factors. Field Crops Research. 2023;303:109137. DOI: 10.1016/j.fcr.2023.109137
17. Soltys-Kalina D., Plich J., Strzelczyk-Żyta D., Śliwka J., Marczewski W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breeding science. 2016;66(2):328-331. DOI: 10.1270/jsbbs.66.328
18. Spalevic V., Janmohammadi M., Sabaghnia N., Kader S. Adapting to climate change in semiarid regions via conservation measures: climate-smart crop rotations of food legumes in cool seasons. Turkish Journal of Agriculture and Forestry. 2025;49(2):242-259. DOI: 10.55730/1300-011X.3262
19. Sumbul A., Ansari R.A., Rizvi R., Mahmood I. Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Journal of Biological Sciences. 2020;27(12):3634-3640. DOI: 10.1016/j.sjbs.2020.08.004
20. Sun W., Shahrajabian M.H., Wang N. A study of the different strains of the genus Azospirillum spp. on increasing productivity and stress resilience in plants. Plants (Basel). 2025;14(2):267. DOI: 10.3390/plants14020267
21. Vasseur-Coronado M., du Boulois H.D., Pertot I., Puopolo G. Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products. Microbiological Research. 2021;245:126672. DOI: 10.1016/j.micres.2020.126672
22. Wu F., Li J., Chen Y., Zhang L., Zhang Y., Wang S. et al. Effects of phosphate solubilizing bacteria on the growth, photosynthesis, and nutrient uptake of Camellia oleifera Abel. Forests. 2019;10(4):348. DOI: 10.3390/f10040348
Review
For citations:
Janmohammadi M., Ebadi-Segherloo A., Sabaghnia N., Mohebodini M. The effect of bacterial seed inoculation on agronomic characteristics of chickpea. Proceedings on applied botany, genetics and breeding.






























