Changes in the metabolomic profiles of Triticum aestivum L. under the influence of aluminum ions
Abstract
Background. Al3+ causes disruption of plant growth and development, which leads to a decrease in the yield of staple crops. Identification of aluminum tolerance markers in wheat is an urgent and promising task for prebreeding, including the development of cultivars with complex resistance to stressors.
Materials and methods. Twenty winter bread wheat accessions from the VIR collection served as the research material. From 2007 through 2019, they underwent field testing for resistance to biotic and abiotic factors of overwintering under the conditions of Northwest Russia (Pushkin). Aluminum resistance of Triticum aestivum L. accessions was studied at the early stages of plant development according to the technique modified by I. N. Kosareva. Metabolic profiles in the control and experimental groups of T. aestivum root samples were studied using nontargeted metabolomic profiling with gas chromatography coupled to mass spectrometry (Agilent 6850A, USA).
Results. The analysis showed that Al+3 stimulated the accumulation of individual free amino acids and reduced the intensity of metabolism for carbohydrates, most fatty acids, and simple phenolic compounds of the phenylpyranoid pathway. Heteroaromatic phenols, terpenes, phytosterols, oligosaccharides, monoacylglycerol, and derivatives of organic and phosphoric acids prevailed in the experimental samples of T. aestivum seedling roots, compared to the control group.
Conclusion. The results of this study will facilitate the identification of T. aestivum accessions with the most explicit protective mechanisms against Al3+ for further use in breeding programs aimed at obtaining aluminum-tolerant high-yielding cultivars of T. aestivum.
About the Authors
N. S. LysenkoRussian Federation
Natalia S. Lysenko, Senior Researcher, VIR
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000, Russia
R. K. Puzanskiy
Russian Federation
Roman K. Puzanskiy, Cand. Sci. (Biology), Researcher
2 Professora Popova Street, St. Petersburg 197022, Russia
T. V. Shelenga
Russian Federation
Tatiana V. Shelenga, Cand. Sci. (Biology), Leading Researcher, VIR
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000, Russia
References
1. Amosova N.V., Nikolaeva O.N., Synzynys B.I. Mechanisms of aluminum tolerance in cultivated plants (review). Agricultural Biology. 2007;(1):36-42. [in Russian]
2. Anioł A. Genetics of acid tolerant plant. In: R.J. Wright, V.C. Baligar, R.P. Murrmann (eds). Developments in Plant and Soil Sciences. Vol. 45. Plant-Soil Interactions at Low pH. Dordrecht: Springer; 1991. p.1007-1017. DOI: 10.1007/978-94-011-3438-5_113
3. Avdonin N.S. Influence of soil properties and fertilizers on plant quality (Vliyaniye svoystv pochv i udobreniy na kachestvo rasteniy). Moscow: Moscow State University; 1966. [in Russian]
4. Baligar V.C., Fageria N.K., Elrashidi M.A. Toxicity and nutrient constraints on root growth. HortScience. 1998;33(6): 960-965. DOI: 10.21273/HORTSCI.33.6.960
5. Chakraborty N., Das A., Pal S., Roy S., Sil S.K., Adak M.K. et al. Exploring aluminum tolerance mechanisms in plants with reference to rice and Arabidopsis: a comprehensive review of genetic, metabolic, and physiological adaptations in acidic soils. Plants (Basel). 2024;13(13):1760. DOI: 10.3390/plants13131760
6. Cosic T., Poljak M., Custic M., Rengel Z. Aluminium tolerance of durum wheat germplasm. Euphytica. 1994;78:239-243. DOI: 10.1007/BF00027522
7. Cury N.F., Silva R.C.C., de S. Fayad-André M., Fontes W., Ricart C.A.O., Castro M.S. et al. Root proteome and metabolome reveal a high nutritional dependency of aluminium in Qualea grandiflora Mart. (Vochysiaceae). Plant and Soil. 2020:446(10):125-143. DOI: 10.1007/s11104-019-04323-3
8. Emebiri L.C. Genetic variation and possible SNP markers for breeding wheat with low‐grain asparagine, the major precursor for acrylamide formation in heat-processed products. Journal of the Science for Food and Agriculture. 2014;94(7):1422-1429. DOI: 10.1002/jsfa.6434
9. Federal State Statistics Service (Rosstat): [website]. [in Russian]. URL: https://rosstat.gov.ru [дата обращения: 01.06.2025].
10. Grevenstuk T., Moing A., Maucourt M., Deborde C., Romano A. Aluminium stress disrupts metabolic performance of Plantago almogravensis plantlets transiently. Biometals. 2015;28(6):997-1007. DOI: 10.1007/s10534-015-9884-2
11. Gupta N., Gaurav S.S., Kumar A. Molecular basis of aluminium toxicity in plants: a review. American Journal of Plant Sciences. 2013;4(12):21-37. DOI: 10.4236/ajps.2013.412A3004
12. Ivanov A.L., Stolbovoy V.S., Grebennikov A.M., Ogleznev A.K., Petrosyan R.D., Shilov P.M. Ranking of acidic soils by priority of liming in the Russian Federation. Dokuchaev Soil Bulletin. 2020;(103):168-187. [in Russian]. DOI: 10.19047/0136-1694-2020-103-168-187
13. Kochian L.V., Hoekenga O.A., Pineros M.A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology. 2004;55(1):459-493. DOI: 10.1146/annurev.arplant.55.031903.141655
14. Kosareva I.A., Davydova G.V., Semenova E.V. Guidelines for acid resistance assessment in cereal crops (Metodicheskiye ukazaniya po opredeleniyu kislotoustoychivosti zernovykh kultur). St. Petersburg: VIR; 1995. [in Russian]
15. Lisitsyn E.M., Amunova O.A. Action of wheat’s genetic systems in depend on way of aluminum entrance into plant. Agricultural Science Euro-North-East. 2017;6(61):8-15. [in Russian]
16. Lysenko N.S., Loseva V.F., Mitrofanova O.P. Winter hardiness of bread wheat from the VIR collection in environments of the Northwestern and Central Black Soil regions of Russia. Proceedings on Applied Botany, Genetics and Breeding. 2019;180(3):41-49. [in Russian]. DOI: 10.30901/2227-8834-2019-3-41-49
17. Lysenko N.S., Malyshev L.L., Puzansky R.K., Shavarda A.L., Shelenga T.V. Biomarkers for alumotolerance of winter hardy forms of Triticum aestivum L. from the VIR collection. Agricultural Biology. 2024;59(1):116-130. [in Russian]. DOI: 10.15389/agrobiology.2024.1.116rus
18. Ma J.F., Ryan P.R., Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science. 2001;6(6):273-278. DOI: 10.1016/s1360-1385(01)01961-6
19. Mashabela M.D., Piater L.A., Steenkamp P.A., Dubery I.A., Tugizimana F., Mhlongo M.I. Comparative metabolite profiling of wheat cultivars (Triticum aestivum) reveals signatory markers for resistance and susceptibility to stripe rust and aluminium (Al3+) toxicity. Metabolites. 2022;12(2):98. DOI: 10.3390/metabo12020098
20. Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. International Review of Cytology. 2000;200:1-46. DOI: 10.1016/S0074-7696(00)00001-2
21. Navakode S., Weidner A., Lohwasser U., Röder M., Börner A. Molecular mapping of quantitative trait loci (QTLs) controlling aluminium tolerance in bread wheat. Euphytica. 2009;166(2):283-290. DOI: 10.1007/s10681-008-9845-8
22. Riede C.R., Anderson J.A. Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Science. 1996;36(4):905-909. DOI: 10.2135/cropsci1996.0011183X0036000400015x
23. Singh S., Parihar P., Singh R., Singh V.P., Prasad S.M. Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science. 2016;6:1143. DOI: 10.3389/fpls.2015.01143
24. Sivaguru M., Fujiwara T., Samaj J., Baluska F., Yang Z., Osawa H. et al. Aluminum-induced 1→3-beta-d-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiology. 2000;124(3):991-1006. DOI: 10.1104/pp.124.3.991
25. Wang J., Su C., Cui Z., Huang L., Gu S., Jiang S. et al. Transcriptomics and metabolomics reveal tolerance new mechanism of rice roots to Al stress. Frontiers in Genetics. 2023;13:1063984. DOI: 10.3389/fgene.2022.1063984
26. Wang Y., Cheng J., Wei S., Jiang W., Li Y., Guo W. et al. Metabolomic study of flavonoids in Camellia drupifera under aluminum stress by UPLC-MS/MS. Plants (Basel). 2023;12(7):1432. DOI: 10.3390/ plants12071432
27. Yamamoto A., Umemoto E., Itoh M., Matsui M., Fujimura N., Furuya S. Reduction of ammonia emission from growing pig rooms by feeding a lower protein diet supplemented with apple pomace. Animal Science Journal. 2002;73(6):505-508. DOI: 10.1046/j.1344-3941.2002.00069.x
28. Yakovleva O.V. Phytotoxicity of aluminum ions. Proceedings on Applied Botany, Genetics and Breeding. 2018;179(3):315-331. [in Russian]. DOI: 10.30901/2227-8834-2018-3-315-331
29. Yang G., Wei Q., Huang H., Xia J. Amino acid transporters in plant cells: a brief review. Plants (Basel). 2020;9(8):967. DOI: 10.3390/plants9080967
Supplementary files
Review
For citations:
Lysenko N.S., Puzanskiy R.K., Shelenga T.V. Changes in the metabolomic profiles of Triticum aestivum L. under the influence of aluminum ions. Proceedings on applied botany, genetics and breeding.






























