Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Variability dynamics of morphological characters in backcrosses of distant hybrids between maize (Zea mays L.) and teosinte (Zea mexicana (Schrad.) Kuntze)

Abstract

Background. Maize breeding involving the crop’s wild relatives contributes to the broadening of its genetic polymorphism. However, in addition to useful agronomic traits, maize also receives from its wild relatives features unfavorable for breeding. The process of selection in a splitting progeny of distant maize hybrids requires thorough assessment of agronomic characters and removal of undesirable or harmful traits.

Materials and methods. The studies were conducted in the steppe zone of the North Caucasus Federal District (town of Prokhladny) in 2020–2024. The work involved 150 samples of the BC1 and BC5 populations obtained by hybridizing the 633MV and P346zakM maize lines with Zea mexicana (Schrad.) Kuntze from the VIR collection. Stimulation of flowering and hybridization of teosinte with maize were conducted with a short 10-hour day, using photoinsulators for 35–40 days, followed by a transition to a longer day (16 hours).

Results. The dynamics of variability was monitored for 9 important agronomic characters of the maize plant and ear in the segregating populations BC1 and BC5. An increase in the share of the maize genome in backcrosses was found to induce improvement in the ear structure more than in the structure and architectonics of the plant. Samples were identified in the BC1 progeny that had pronounced bushiness and branching, high leafiness and stem pubescence, a long ear stalk, and abundant formation of primitive ears with 2–4 rows of grains and 6–8 grains in a row with asynchronous flowering. Plants in the BC5 progeny exhibited less bushiness and leafiness, an ear stalk shorter than in BC1, and a tendency to form 2 to 3 ears with synchronous flowering. Their ears consisted of 14–16 rows of grains, having 28–35 grains in a row.

Conclusion. The results of the studies confirm the transfer of valuable agronomic traits from teosinte, such as prolificacy, stem pubescence (trichomes), increased stem lignification, and resistance to dense sowing.

About the Authors

D. S. Kutsev
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Denis S. Kutsev, Researcher,  VIR

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000 Russia



E. B. Khatefov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Eduard B. Khatefov, Dr. Sci. (Biology), Leading Researcher,  VIR

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000, Russia



References

1. Buckler E., Holtsford T.P. Zea systematics: Ribosomal ITS evidence. Molecular Biology and Evolution. 1996;13(4):612-622. DOI: 10.1093/oxfordjournals.molbev.a025621

2. Choudhary M., Singh A., Gupta M., Rakshit S. Enabling technologies for utilization of maize as a bioenergy feedstock. Biofuels, Bioproducts and Biorefining. 2020;14(2):402-416. DOI: 10.1002/bbb.2060

3. Dempewolf H., Eastwood R.J., Guarino L., Khoury C.K., Müller J.V., Toll J. Adapting agriculture to climate change: A global initiative to collect, conserve, and use crop wild relatives. Agroecology and Sustainable Food Systems. 2014;38(4):369-377. DOI: 10.1080/21683565.2013.870629

4. Doebley J., Goodman M.M., Stuber C.W. Patterns of isozyme variation between maize and Mexican annual teosinte. Economic Botany. 1987;41:234-246. DOI: 10.1007/BF02858971

5. Doebley J.F., Goodman M.M., Stuber C.W. Isoenzymatic variation in Zea (Gramineae). Systematic Botany. 1984;9(2):203-218. DOI: 10.2307/2418824

6. Dospekhov B.A. Methodology of field trial (with fundamentals of statistical processing of research results) (Metodika polevogo opyta [s osnovami statisticheskoy obrabotki rezultatov issledovaniy]). 6th ed. Moscow: Alyans; 2011. [in Russian]

7. Hufford M.B., Xu X., van Heerwaarden J., Pyhäjärvi T., Chia J.M., Cartwright R.A. et al. Comparative population genomics of maize domestication and improvement. Nature Genetics. 2012;44(7):808-811. DOI: 10.1038/ng.2309

8. Kato Y.T.A. Cytological studies of maize (Zea mays L.) and teosinte (Zea mexicana (Schrader) Kuntze) in relation to their origin and evolution. Massachusetts Agricultural Experiment Station Bulletin. 1976;635:1-185.

9. Kato Y.T.A., Lopez R. Chromosome knobs of the perennial teosintes. Maydica. 1990;35:125-141.

10. Kukekov V.G. (comp.). Broad unified COMECON list of descriptors and international COMECON list of descriptors for sp. Zea mays L. Leningrad: VIR; 1977. [in Russian]

11. Kumar A., Singh N.K., Jeena A.S., Jaiswal J.P., Verma S.S. Evaluation of teosinte derived maize lines for drought tolerance. Indian Journal of Plant Genetic Resources. 2020;33(1):60-67. DOI: 10.5958/0976-1926.2020.00009.1

12. Mangelsdorf P.C., Reeves R.G. The origin of maize. Proceedings of the National Academy of Sciences of the United States of America. 1938;24(8):303-312. DOI: 10.1073/pnas.24.8.303

13. Nelson G.C., Rosegrant M.W., Palazzo A., Gray I., Ingersoll Ch., Robertson R.D., Tokgoz S., Tingju Zh., Timothy B.S., Claudia R., Siwa M., Liangzhi Y. Food security, farming, and climate change to 2050: scenarios, results, policy options. Washington, DC: International Food Policy Research Institute; 2010. DOI: 10.2499/9780896291867

14. Pásztor K., Borsos O. Inheritance and chemical composition in inbred maize (Zea mays L.) × teosinte (Zea mays subsp. mexicana (Schrader) Iltis) hybrids. Növénytermelés. 1990;39:193-213.

15. Rosegrant M.W., Ringler C., Sulser T., Ewing M., Palazzo A., Zhu T., Nelson G.C., Koo J., Robertson R., Msangi S., Batka M. Agriculture and food security under global change: Prospects for 2025/2050. Background note for supporting the development of CGIAR Strategy and Results Framework. Washington, DC: International Food Policy Research Institute; 2009.

16. Sahoo S., Adhikari S., Joshi A., Singh N.K. Use of wild progenitor teosinte in maize (Zea mays subsp. mays) improvement: present status and future prospects. Tropical Plant Biology. 2021;14(6041):156-179. DOI: 10.1007/s12042-021-09288-1

17. Shmaraev G.E., Matveeva G.V. Guidelines for the study and maintenance of maize collection accessions (Metodicheskiye ukazaniya po izucheniyu i podderzhaniyu obraztsov kollektsii kukuruzy). Leningrad: VIR; 1985. [in Russian]

18. Smith B.D. Origins of agriculture in Eastern North America. Science. 1989;246(4937): 1566-1571. DOI: 10.1126/science.246.4937.1566

19. Sotchenko V.S. Maize breeding, seed production, and cultivation technology (Selektsiya, semenovodstvo, tekhnologiya vozdelyvaniya kukuruzy). Pyatigorsk; 2009. [in Russian]

20. Srinivasan G., Brewbaker J.L. Genetic analysis of hybrids between maize and perennial teosinte. II: Ear traits [Zea mays L. – Zea diploperennis Iltis, Doebley & Guzman]. Maydica. 1999;44(4):371-384.

21. StatSoft Russia: [website]. Available from: https://1soft.space/en/statsoft-statistica [accessed Jul. 11, 2023].

22. Tian F., Stevens N.M., Buckler E.S. Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. In: National Academy of Sciences. In the Light of Evolution. Vol. III. Two Centuries of Darwin. Washington, DC: National Academies Press; 2009. p.111-128. DOI: 10.17226/12692


Review

For citations:


Kutsev D.S., Khatefov E.B. Variability dynamics of morphological characters in backcrosses of distant hybrids between maize (Zea mays L.) and teosinte (Zea mexicana (Schrad.) Kuntze). Proceedings on applied botany, genetics and breeding.

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)