Preview

Proceedings on applied botany, genetics and breeding

Advanced search

The f3’5’h (d) gene for pink coloring of flax flowers is a member of the CYP75 family within the CYP450 gene class: from class function to gene function

https://doi.org/10.30901/2227-8834-2025-1-242-256

Abstract

The publication characterizes flavonoids – plant pigments, their role, classification, and biosynthesis. Attention is mainly paid to the enzymes of the cytochrome P450 class, which, in addition to their participation in flavonoid biosynthesis, play a major role in many other processes, such as polymer biosynthesis, hormone metabolism, and defense against unfavorable factors. Various information about the flavonoid 3’,5-hydroxylase (F35H) gene is presented, highlighting key advances and major problems in its study. The role of this gene in anthocyanin biosynthesis is discussed, its product is shown to belong to the CYP75 enzyme family from the CYP71 clan of cytochromes P450, and the active centers of the enzyme are displayed.

Flax usually has a blue corolla, and delphinidin as the main pigment in its coloration. In this publication, we characterized the d gene (f35h), which in recessive condition causes pink flower coloration and pelargonidin as the main pigment. It was shown that F3’5’H in flax belongs to CYP75 enzymes, but unlike most others is attributed to the CYP75B subfamily rather than CYP75A. The possibility of multiple allelism of F35H leading to different phenotypes was demonstrated, which confirms the multiple allelism of the d gene in flax, already known at the formal genetic level. At present, flax is the only species wherein the emergence of F3’5’H activity went to the detriment of F3’H, probably because flax is phylogenetically distant from other ancient cultivated plants and its evolution is associated with selection for yellow seed color.

About the Authors

A. A. Slobodkina
N.I. Vavilov All-Russian AllRussian Institute of Plant Genetic Resources
Russian Federation

Anastasia А. Slobodkina, Associate Researcher

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



A. V. Pavlov
N.I. Vavilov All-Russian AllRussian Institute of Plant Genetic Resources
Russian Federation

Andrey V. Pavlov, Cand. Sci. (Agriculture), Senior Researcher

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



E. A. Porokhovinova
N.I. Vavilov All-Russian AllRussian Institute of Plant Genetic Resources
Russian Federation

Elizaveta A. Porokhovinova, Dr. Sci. (Biology), Leading Researcher

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



References

1. Babu P.R., Rao K.V., Reddy V.D. Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.). Gene. 2013;513(1):156-162. DOI: 10.1016/j.gene.2012.10.040

2. Bak S., Beisson F., Bishop G., Hamberger B., Höfer R., Paquette S. et al. Cytochromes P450. The Arabidopsis Book. 2011;9:e0144. DOI: 10.1199/tab.0144

3. Berková V., Berka M., Griga M., Kopecká R., Prokopová M., Luklová M. et al. Molecular mechanisms underlying flax (Linum usitatissimum L.) tolerance to cadmium: a case study of proteome and metabolome of four different flax genotypes. Plants. 2022;11(21):2931. DOI: 10.3390/plants11212931

4. Britton G. The biochemistry of natural pigments. Moscow: Mir; 1986. [in Russian].

5. Dubois J., Harborne J., Bablom B., Plonka F. The inheritance of flower colors and anthocyanins in flax (Linum usitatissimum L.). Annales de l’amélioration de plantes. 1979;29(3):267-276.

6. Dubois J.A., Harborne J.B. Anthocyanin inheritance in petals of flax, Linum usitatissimum. Phytochemistry. 1975;14:2491-2494.

7. Elladi E.V. Linum usitatissimum L. Vav. consp. nov. – Flax (Len). In: E.V. Vulf (ed.). Flora of Cultivated Plants. Vol. 6. Fiber Crops (Pryadilnye). Moscow; Leningrad; 1940. р.109-208. [in Russian].

8. FAOSTAT. Food and Agriculture Organization of the United Nations. Food and Agriculture Data: [website]. Available from: https://www.fao.org/faostat/en/#data/QCL [accessed Oct. 23, 2024].

9. Fujiwara Y., Nishiyama S., Onoue N., Matsuzaki R., Yonemori K., Tao R. Candidate gene analysis for ASTRINGENCY controlling fruit astringency in Diospyros kaki based on mRNAand small RNA-sequencing analyses. Acta Horticulturae. 2022;1338:269-276. DOI: 10.17660/ActaHortic.2022.1338.39

10. Holton T.A., Cornish E.C. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell. 1995;7(7):1071-1083. DOI: 10.1105/tpc.7.7.1071

11. Irmisch S., Ruebsam H., Jancsik S., Man Saint Yuen M., Madilao L.L., Bohlmann J. Flavonol biosynthesis genes and their use in engineering the plant antidiabetic metabolite montbretin A. Plant Physiology. 2019;180(3):1277-1290. DOI: 10.1104/pp.19.00254

12. Kitamura S. Transport of flavonoids: from cytosolic synthesis to vacuolar accumulation. In: E. Grotewold (ed.). The Science of Flavonoids. New York, NY: Springer; 2008. p.123-146.

13. Koolman J., Roehm K.H. Cytochrome P450 system. In: J. Koolman, K.H. Roehm. Taschenatlas der Biochemie. Moscow: Mir; 2004. p.310-311. [in Russian]. URL: https://www.chem.msu.ru/rus/teaching/kolman/310.htm [дата обращения: 01.09.2024].

14. Lam P.Y., Liu H., Lo C. Completion of tricin biosynthesis pathway in rice: cytochrome P450 75b4 is a unique chrysoeriol 5’-hydroxylase. Plant Physiology. 2015;168(4):1527-1536. DOI: 10.1104/pp.15.00566

15. Liang C.Y., Rengasamy K.P., Huang L.M., Hsu C.C., Jeng M.F., Chen W.H. et al. Assessment of violet-blue color formation in Phalaenopsis orchids. BMC Plant Biology. 2020;20(1):212. DOI: 10.1186/s12870-020-02402-7

16. McClean P., Lee R., Howe K., Osborne C., Grimwood J., Levy S. et al. The common bean V gene encodes Flavonoid 3′5′ Hydroxylase: a major mutational target for flavonoid diversity in angiosperm. Frontiers in Plant Science. 2022;13:869582. DOI: 10.3389/fpls.2022.869582

17. Minerdi D., Savoi S., Sabbatini P. Role of cytochrome P450 enzyme in plant microorganisms’ communication: a focus on grapevine. International Journal of Molecular Sciences. 2023;24(5):4695. DOI: 10.3390/ijms24054695

18. Миневич И.Э. Научное обоснование и разработка научно-практических основ технологий глубокой переработки семян льна с получением ингредиентов для создания продуктов здорового питания: дис. ... докт. техн. наук. Тверь: ФНЦ лубяных культур; 2022.

19. NCBI. National Center for Biotechnology Information: [website]. Available from: https://www.ncbi.nlm.nih.gov [accessed June 20, 2024].

20. Nelson D.R. Cytochrome P450 diversity in the tree of life. Biochimica et Biophysica Acta. Proteins and Proteomics. 2018;1866(1):141-154. DOI: 10.1016/j.bbapap.2017.05.003

21. Olsen K.M., Hehn A., Jugdé H., Slimestad R., Larbat R., Bourgaud F. et al. Identification and characterisation of CYP75A31, a new flavonoid 3’5’-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biology. 2010;10:21. DOI: 10.1186/1471-2229-10-21

22. Phytozome 13. The Plant Genomics Resource: [website]. Available from: https://phytozome-next.jgi.doe.gov [accessed June 20, 2024].

23. Porokhovinova E.A. Building up and studying the genetic collection of flax: Linum usitatissimum L. (Sozdaniye i izucheniye geneticheskoy kollektsii lna: Linum usitatissimum L.) [dissertation]. St. Petersburg: VIR; 2002. [in Russian].

24. Porokhovinova E.A. Genetic collection of flax (Linum usitatissimum L.): establishment, analysis, and prospects of utilization (Geneticheskaya kollektsiya lna (Linum usitatissimum L.): sozdaniye, analiz i perspectivy ispolzovanya) [dissertation]. St. Petersburg: VIR; 2019. [in Russian].

25. Porokhovinova E.A., Kutuzova S.N., Pavlov A.V., Buzovkina I.S., Brutch N.B. Diversity of flax morphological characters in VIR genetic collection as a result of crop domestication. Ecological Genetics. 2018;16(4):33-50. [in Russian]. DOI: 10.17816/ecogen16433-50

26. Porokhovinova E.A., Shelenga T.V., Matveeva T.V., Pavlov A.V., Grigorieva E.A., Brutch N.B. Polymorphism of genes controlling low level of linolenic acid in lines from VIR flax genetic collection. Ecological Genetics. 2019;17(2):5-19. [in Russian] . DOI: 10.17816/ecogen1725-19

27. Pourcel L., Routaboul J.M., Cheynier V., Lepiniec L., Debeaujon I. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science. 2007;12(1):29-36. DOI: 10.1016/j.tplants.2006.11.006

28. Rakhmangulov R.S. Application of the CRISPR/Cas system for gene editing in ornamental crops. Plant Biotechnology and Breeding. 2022;5(3):33-41. [in Russian]. DOI: 10.30901/2658-62662022-3-o1

29. Rakhmangulov R.S., Barabanov I.V., Erastenkova M.V., Ivanov A.A., Kovalenko T.V., Mezhina K.M. et al. The new directions in genetics, breeding and biotechnology of ornamental and berry crops in the N.I. Vavilov Institute of Plant Genetic Resources (VIR). Plant Biotechnology and Breeding. 2022;5(4):65-78. [in Russian]. DOI: 10.30901/2658-6266-2022-4-o3

30. Rakhmangulov R.S., Tikhonova N.G. Breeding of ornamental plants in Russia. Plant Biotechnology and Breeding. 2021;4(4):40-54. [in Russian]. DOI: 10.30901/2658-6266-2021-4-o4

31. Rupasinghe S., Baudry J., Schuler M.A. Common active site architecture and binding strategy of four phenylpropanoid P450s from Arabidopsis thaliana as revealed by molecular modeling. Protein Engineering. 2003;16(10):721-731. DOI: 10.1093/protein/gzg094

32. Sato M., Kawabe T., Hosokawa M., Tatsuzawa F., Doi M. Tissue culture-induced flower-color changes in saintpaulia caused by excision of the transposon inserted in the flavonoid 3’, 5’ hydroxylase (F3’5’H) promoter. Plant Cell Reports. 2011;30(5):929-939. DOI: 10.1007/s00299-011-1016-z

33. Seitz C., Ameres S., Forkmann G. Identification of the molecular basis for the functional difference between flavonoid 3’-hydroxylase and flavonoid 3’5’-hydroxylase. FEBS Letters. 2007;581(18):3429-3434. DOI: 10.1016/j.febslet.2007.06.045

34. Seitz C., Ameres S., Schlangen K., Forkmann G., Halbwirth H. Multiple evolution of flavonoid 3’,5’-hydroxylase. Planta. 2015;242(3):561-573. DOI: 10.1007/s00425-015-2293-5

35. Sharova E.I. Plant antioxidants. St. Petersburg: St. Petersburg State University; 2016. [in Russian].

36. State Commission of the Russian Federation for Testing and Protecting Selection Achievements: [website]. [in Russian] (Государственная комиссия Российской Федерации по испытанию и охране селекционных достижений: [сайт]). URL: https://gossortrf.ru [дата обращения: 07.08.2024].

37. Strygina K.V., Khlestkina E.K. Anthocyanins synthesis in potato (Solanum tuberosum L.): genetic markers for smart breeding (review). Agricultural Biology. 2017;52(1):37-49. [in Russian]. DOI: 10.15389/agrobiology.2017.1.37rus

38. Sudarshan G. P., Kulkarni M., Akhov L., Ashe P., Shaterian H., Cloutier S. et al. QTL mapping and molecular characterization of the classical D locus controlling seed and flower color in Linum usitatissimum (flax). Scientific Reports. 2017;7(1):15751. DOI: 10.1038/s41598-017-11565-7

39. Takahashi R., Dubouzet J.G., Matsumura H., Yasuda K., Iwashina T. A new allele of flower color gene W1 encoding flavonoid 3’5’-hydroxylase is responsible for light purple flowers in wild soybean Glycine soja. BMC Plant Biology. 2010;10:155. DOI: 10.1186/1471-2229-10-155

40. Tanaka Y., Yonekura K., Fukuchi-Mizutani M., Fukui Y., Fujiwara H., Ashikari T. et al. Molecular and biochemical characterization of three anthocyanin synthetic enzymes from Gentiana triflora. Plant and Cell Physiology. 1996;37(5):711-716. DOI: 10.1093/oxfordjournals.pcp.a029004

41. Wang Y.S., Xu Y.J., Gao L.P., Yu O., Wang X.Z., He X.J. et al. Functional analysis of flavonoid 3’,5’-hydroxylase from tea plant (Camellia sinensis): critical role in the accumulation of catechins. BMC Plant Biology. 2014;14:347. DOI: 10.1186/s12870-014-0347-7

42. Williams C.A., Grayer R.J. Anthocyanins and other flavonoids. Natural Product Reports. 2004;21(4):539-573. DOI: 10.1039/B311404J

43. Winkel B.S.J. The biosynthesis of flavonoids. In: E. Grotewold (ed.). The Science of Flavonoids. New York, NY: Springer; 2008. p.71-95. DOI: 10.1007/978-0-387-28822-2_3

44. Xu J., Wang X., Guo W. The cytochrome P450 superfamily: key players in plant development and defense. Journal of Integrative Agriculture. 2015;14(9):1673-1686. DOI: 10.1016/S2095-3119(14)60980-1

45. Yoshida K., Mori M., Kondo T. Blue flower color development by anthocyanins: from chemical structure to cell physiology. Natural Product Reports. 2009;26(7):884-915. DOI: 10.1039/B800165K

46. Zabala G., Vodkin L.O. A rearrangement resulting in small tandem repeats in the F3’5’H gene of white flower genotypes is associated with the soybean W1 locus. Crop Science. 2007;47(S2):113-124. DOI: 10.2135/cropsci2006.12.0838tpg


Supplementary files

1. Supplementary 1
Subject Basic skeletons of the main classes of flavonoids (* – stereocenter)
Type Исследовательские инструменты
View (235KB)    
Indexing metadata ▾
2. Supplementary 2
Subject Proposed flavonoid transport mechanisms. The flavonoid multienzyme complex is shown as a linear array for convenience (from Kitamura, 2008)
Type Исследовательские инструменты
View (321KB)    
Indexing metadata ▾
3. Supplementary 3
Subject Substrate docking of F3’5’H and its substrates dihydroquercetin. Substrate docking prediction of (a) DgF3’5’H and (b) PhF3’5’H (from Liang et al., 2020)
Type Исследовательские инструменты
View (504KB)    
Indexing metadata ▾
4. Supplementary 4
Subject Amino acid alignment of F3'5'H proteins of Phaseolus vulgaris samples from different centers of origin. The positions of α-helices (H) and β-sheets (S) determined by the MODELER program are marked above the alignment. Substrate recognition regions (SRC) of the sequence, highlighted in red and CYP450 motifs common to CYP450 proteins, highlighted in blue, are marked below the alignment. The following P450 regions were identified based on the previous domain and matrix structure of the plant CYP75 protein family (Falginella et al., 2010 cited in McClean et al., 2022): SRS1, SRS2, SRS3, SRS4, I-helix (a subcomponent of SRS 4), K-helix, SRS 5, ERR-triad, heme-binding domain (McClean et al., 2022)
Type Исследовательские инструменты
Download (564KB)    
Indexing metadata ▾
5. Supplementary 5
Subject Location of F3’5H flax (marked with an asterisk) in the F3’H clade (from Sudarshan et al., 2017)
Type Исследовательские инструменты
View (362KB)    
Indexing metadata ▾
6. Supplementary 6
Subject Phylogenetic tree based on the alignment of nucleotide sequences of F3'H and F3'5'H genes of species of the family Asteraceae using the Prank program (Seitz et al., 2015)
Type Исследовательские инструменты
View (376KB)    
Indexing metadata ▾

Review

For citations:


Slobodkina A.A., Pavlov A.V., Porokhovinova E.A. The f3’5’h (d) gene for pink coloring of flax flowers is a member of the CYP75 family within the CYP450 gene class: from class function to gene function. Proceedings on applied botany, genetics and breeding. 2025;186(1):242-256. (In Russ.) https://doi.org/10.30901/2227-8834-2025-1-242-256

Views: 118


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)