Snapdragon (Antirrhinum majus L.): a retrospective review of contemporary breeding
https://doi.org/10.30901/2227-8834-2025-1-210-223
Abstract
Today, studying molecular genetic bases of important agronomic traits and mechanisms of intervarietal and interspecific differences is of considerable interest for ornamental crop breeding. General characteristics and advantages of snapdragon (Antirrhinum majus) as a model object for genetic research are presented. Main blocks of genes encoding plant characters that ensure the ornamental value (flower and inflorescence shapes, corolla color, etc.) are discussed. Considerable attention is paid to the activity of mobile elements, and transposon-associated mutagenesis.
Keywords
About the Authors
I. V. BarabanovRussian Federation
Ivan V. Barabanov, Associate Researcher
42 44 Bolshaya Morskaya Street, St. Petersburg 190000
M. V. Vasilieva
Russian Federation
Marina V. Vasilieva, Leading Specialist
42 44 Bolshaya Morskaya Street, St. Petersburg 190000
I. N. Anisimova
Russian Federation
Irina N. Anisimova, Dr. Sci. (Biology), Leading Researcher
42 44 Bolshaya Morskaya Street, St. Petersburg 190000
R. S. Rakhmangulov
Russian Federation
Ruslan S. Rakhmangulov, Cand. Sci. (Biology), Senior Researcher
42 44 Bolshaya Morskaya Street, St. Petersburg 190000
References
1. Albert N.W., Butelli E., Moss S.M.A., Piazza P., Waite C.N., Schwinn K.E. et al. Discrete bHLH transcription factors play functionally overlapping roles in pigmentation patterning in flowers of Antirrhinum majus. The New Phytologyst. 2021;231(2):849-863. DOI: 10.1111/nph.17142
2. Albert N.W., Lewis D.H., Zhang H., Schwinn K.E., Jameson P.E., Davies K.M. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. The Plant Journal. 2011;65(5):771-784. DOI: 10.1111/j.1365-313x.2010.04465.x
3. Banfield M.J., Brady R.L., The structure of Antirrhinum centroradialis protein (CEN) suggests a role as a kinase regulator. Journal of Molecular Biology. 2000;297(5):1159-1170. DOI: 10.1006/jmbi.2000.3619
4. Bradley D., Carpenter R., Copsey L., Vincent C., Rothstein S., Coen E. Control of inflorescence architecture in Antirrhinum. Nature. 1996;379(6568):791-797. DOI: 10.1038/379791a0
5. Byrne M., Barley R., Curtis M., Arroyo J.M., Dunham M., Hudson A. et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature. 2000;408(6815):967-971. DOI: 10.1038/35050091
6. Campanella J.J., Smalley J.V., Dempsey M.E. A phylogenetic examination of the primary anthocyanin production pathway of the Plantae. Botanical Studies. 2014;55(1):10. DOI: 10.1186/1999-3110-55-10
7. Cao Y., Li K., Li Y., Zhao X., Wang L. MYB transcription factors as regulators of secondary metabolism in plants. Biology (Basel). 2020;9(3):61. DOI: 10.3390/biology9030061
8. Carey C.C., Strahle J.T., Selinger D.A., Chandler V.L. Mutations in the pale aleurone color regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana. The Plant Cell. 2004;16(2):450-464. DOI: 10.1105/tpc.018796
9. Carpenter R., Coen E.S. Floral homeotic mutations produced by transposon-mutagenesis in Anrirrhinum majus. Genes and Development. 1990;4(9):1483-1493. DOI: 10.1101/gad.4.9.1483
10. Cavallini E., Matus J.T., Finezzo L., Zenoni S., Loyola R., Guzzo F. et al. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiology. 2015;167(4):1448-1470. DOI: 10.1104/pp.114.256172
11. Coen E.S., Romero J.M., Doyle S., Elliott R., Murphy G., Carpenter R. floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell. 1990;63(6):1311-1322. DOI: 10.1016/0092-8674(90)90426-f
12. Cremer F., Lönnig W.E., Saedler H., Huijser P. The delayed terminal flower phenotype is caused by a conditional mutation in the CENTRORADIALIS gene of snapdragon. Plant Physiology. 2001;126(3):1031-1041. DOI: 10.1104/pp.126.3.1031
13. Cubas P., Coen E., Zapater J.M. Ancient asymmetries in the evolution of flowers. Current Biology. 2001;11(13):1050-1052. DOI: 10.1016/s0960-9822(01)00295-0
14. Delgado-Vargas F., Jiménez A.R., Paredes-López O. Natural pigments: carotenoids, anthocyanins, and betalains – characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition. 2000;40(3):173-289. DOI: 10.1080/10408690091189257
15. Doebley J., Stec A., Hubbard L. The evolution of apical dominance in maize. Nature. 1997;386(6624):485-488. DOI: 10.1038/386485a0
16. Du H., Li Z., Liu L., Tang X.F., Yang W.J., Wu Y.M. et al. Biochemical and molecular characterization of the plant MYB transcription factors family. Biochemistry. 2009;74(1):5-16. [in Russian].
17. Dubos C., Stracke R., Grotewold E., Weisshaar B., Martin C., Lepiniec L. MYB transcription factors in Arabidopsis. Trends in Plant Science. 2010;15(10):573-581. DOI: 10.1016/j.tplants.2010.06.005
18. Galego L., Almeida J., Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes and Development. 2002;16(7):880-891. DOI: 10.1101/gad.221002
19. Goodrich J., Carpenter R., Coen E.S. A common gene regulates pigmentation pattern in diverse plant species. Cell. 1992;68(5):955-964. DOI: 10.1016/0092-8674(92)90038-e
20. Gübitz T., Caldwell A., Hudson A. Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives. Molecular Biology and Evolution. 2003;20(9):1537-1544. DOI: 10.1093/molbev/msg166
21. Gupta M.D., Aggarwal P., Nath U. CINCINNATA in Antirrhinum majus directly modulates genes involved in cytokinin and auxin signaling. The New Phytologist. 2014;204(4):901-912. DOI: 10.1111/nph.12963
22. Hake S., Smith H.M.S., Holtan H., Magnani E., Mele G., Ramirez J. The role of knox genes in plant development. Annual Review of Cell and Developmental Biology. 2004;20:125-151. DOI: 10.1146/annurev.cellbio.20.031803.093824
23. Harrison B.J., Fincham J.R.S. Instability at the Pal locus in Antirrhinum majus. Heredity. 1964;19(2):237-258. DOI: 10.1038/hdy.1964.28
24. Harrison B.J., Stickland R.G. Precursors and genetic control of pigmentation. I. Induced biosynthesis of pelargonidin, cyanidin and delphinidin in Antirrhinum majus. Heredity. 1974;33:108-112.
25. Hehl R., Sommer H., Saedler H. Interaction between the Tam1 and Tam2 transposable elements of Antirrhinum majus. Molecular and General Genetics. 1987;207(1):47-53. DOI: 10.1007/bf00331489
26. Hichri I., Barrieu F., Bogs J., Kappel C., Delrot S., Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany. 2011;62(8):2465-2483. DOI: 10.1093/jxb/erq442
27. Hlaing T.S., Kondo H., Deguchi A., Miyoshi K. Induction of adventitious shoots and tetraploids in Antirrhinum majus L. by treatment of antimitotic agents in vitro without plant growth regulators. Plant Biotechnology (Tokyo). 2021;38(1):145-152. DOI: 10.5511/plantbiotechnology.20.0731a
28. Hodges S.A., Arnold M.L. Floral and ecological isolation between Aquilegia formosa and Aquilegia pubescens. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(7):2493-2496. DOI: 10.1073/pnas.91.7.2493
29. Huijser P., Klein J., Lönnig W.E., Meijer H., Saedler H., Sommer H. Bractomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. The EMBO Journal. 1992;11(4):1239-1249. DOI: 10.1002/j.1460-2075.1992.tb05168.x
30. Isachkin A.V., Soloviev A.A., Khanbabaeva O.E., Bodganova V.D., Zarenkova E.G. Studying the influence of colchicine aqueous solution treatment on characteristics modification of two horticultural groups of snapdragon (Antirrhinum majus L.). Izvestiya of Timiryazev Agricultural Academy. 2014;(4):5-17. [in Russian].
31. Ishiguro K., Taniguchi M., Tanaka Y. Functional analysis of Antirrhinum kelloggii flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes; critical role in flower color and evolution in the genus Antirrhinum. Journal of Plant Research. 2011;125(3):451-456. DOI: 10.1007/s10265011-0455-5
32. Jackson D., Culianez-Macia F., Prescott A.G., Roberts K., Martin C. Expression patterns of myb genes from Antirrhinum flowers. The Plant Cell. 1991;3(2):115-125. DOI: 10.2307/3869281
33. Khanbabaeva O.E. Biological and technological bases of the breeding of ornamental herbaceous annual plants of the order Lamiales Bromhead (Biologicheskiye i tekhnologicheskiye osnovy selektsii dekorativnykh travyanistykh odnoletnikh rasteniy poryadka yasnotkotsvetnye [Lamiales Bromhead]) [dissertation]. Moscow: RSAU Moscow Timiryazev Agricultural Academy; 2022. [in Russian] (Ханбабаева О.Е. Биологические и технологические основы селекции декоративных травянистых однолетних растений порядка ясноткоцветные (Lamiales Bromhead): дис. … докт. с.-х. наук. Москва: РГАУ МСХА имени К.А. Тимирязева; 2022).
34. Khanbabaeva O.E. Gametophytic self-incompatibility in snapdragon breeding (Antirrhinum majus L.): a monograph (Gametofitnaya samonesovmestimost v selektsii lvinogo zeva (Antirrhinum majus L.): monografiya). Moscow: RSAU Moscow Timiryazev Agricultural Academy; 2011. [in Russian].
35. Khanbabaeva O.E., Bogdanova V.D., Zarenkova E.G. Studying of flowering and pollination biology of dwarf snapdragon (Antirrhinum majus L.) varieties and lines. Izvestiya of Timiryazev Agricultural Academy. 2013;(5):92-100. [in Russian].
36. Khojayori F.N., Ponraj U., Buch K., Zhao Y., HerreraUbaldo H., Glover B.J. Evolution and development of complex floral displays. Development (Cambridge). 2024;151(21):dev203027. DOI: 10.1242/dev.203027
37. Koes R., Verweij W., Quattrocchio F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science. 2005;10(5):236-242. DOI: 10.1016/j.tplants.2005.03.002
38. Kosugi S., Ohashi Y. PCF1and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. The Plant Cell. 1997;9(9):1607-1619. DOI: 10.1105/tpc.9.9.1607
39. Kramer E.M. Plus ça change, plus c’est la même chose: The developmental evolution of flowers. Current Topics in Developmental Biology. 2019;131:211-238. DOI: 10.1016/bs.ctdb.2018.11.015
40. Krylova Е.А. The role of TFL1 orthologs in determining of plant architectonics. Russian Journal of Genetics. 2020;56(11):1308-1322. DOI: 10.1134/S1022795420110058
41. Krylova E.A., Mikhailova A.S. Regulation of flavonoid biosynthesis in representatives of the tribe Phaseoleae DC. Plant Biotechnology and Breeding. 2021;4(3):15-25. [in Russian]. DOI: 10.30901/2658-6266-2021-3-o1
42. Kuznetzova T.V., Timonin A.C. Inflorescence: morphology, evolution, taxonomic significance (application of complementary approaches) (Sotsvetiye: morfologiya, evolyutsiya, taksonomicheskoye znacheniye [primeneniye komplementarnykh podkhodov]). Moscow: KMK; 2017. [in Russian].
43. Li M., Zhang D., Gao Q., Luo Y., Zhang H., Ma B. et al. Genome structure and evolution of Antirrhinum majus L. Nature Plants. 2019;5(2):174-183. DOI: 10.1038/s41477-018-0349-9
44. Luo D., Carpenter R., Copsey L., Vincent C., Clark J., Coen E. Control of organ asymmetry in flowers of Antirrhinum. Cell. 1999;99(4):367-376. DOI: 10.1016/s0092-8674(00)81523-8
45. Luo D., Carpenter R., Vincent C., Copsey L., Coen E. Origin of floral asymmetry in Antirrhinum. Nature. 1996;383(6603):794-799. DOI: 10.1038/383794a0
46. Mamonov E.V., Hanbabaeva O.E. Gametophyte self-incompatibility of inbreed snap dragon lines (Antrirrhinum majus L.) depending both upon flower age and environmental conditions. Izvestiya of Timiryazev Agricultural Academy. 2008:(1);95-100. [in Russian].
47. Martin C., Carpenter R., Sommer H., Saedler H., Coen E.S. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. The EMBO Journal. 1985;4(7):1625-1630. DOI: 10.1002/j.1460-2075.1985.tb03829.x
48. Martin C., Gerats T. Control of pigment biosynthesis genes during petal development. The Plant Cell. 1993;5(10):1253-1264. DOI: 10.1105/tpc.5.10.1253
49. Martin C., Prescott A., Mackay S., Bartlett J., Vrijlandt E. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. The Plant Journal. 1991;1(1):37-49. DOI: 10.1111/j.1365-313x.1991.00037.x
50. Mizzotti C., Galliani B.M., Masiero S. The backstage of the ABC model: the Antirrhinum majus contribution. Plant Biosystems. 2014;148(1):176-186. DOI: 10.1080/11263504.2013.877531
51. Moss S.M.A., Zhou Y., Butelli E., Waite C.N., Yeh S.M., Cordiner S.B. et al. Painted flowers: Eluta generates pigment patterning in Antirrhinum. The New Phytologyst. 2024;243(2):738-752. DOI: 10.1111/nph.19866
52. Nassour R., Ayash A., Al-Tameemi K. Anthocyanin pigments: structure and biological importance. Journal of Chemical and Pharmaceutical Sciences. 2020;13(4):45-57.
53. Nath U., Crawford B.C.W., Carpenter R., Coen E. Genetic control of surface curvature. Science (New York). 2003;299(5611):1404-1407. DOI: 10.1126/science.1079354
54. Otero A., Fernández-Mazuecos M., Vargas P. Evolution in the model genus Antirrhinum based on phylogenomics of topotypic material. Frontiers in Plant Science. 2021;12:631178. DOI: 10.3389/fpls.2021.631178
55. Oyama R.K. Pollinator-mediated reproductive isolation and speciation in Antirrhinum (Veronicaceae) [dissertation]. Cambridge, MA: Harvard University; 2002.
56. Pattanaik S., Kong Q., Zaitlin D., Werkman J.R., Xie C.H., Patra B. et al. Isolation and functional characterization of a floral tissue-specific R2R3-MYB regulator from tobacco. Planta. 2010;231(5):1061-1076. DOI: 10.1007/s00425-010-1108-y
57. Qiao Z., Song X., Kong Y., Shi S., Yan B., Egea-Cortines M. et al. Molecular mechanisms regulating ornamental traits and scent production in snapdragon (Antirrhinum majus L.). Horticulture Advances. 2023;1:15. DOI: 10.1007/s44281023-00019-y
58. Quattrocchio F., Wing J., Woude K., Souer E., Vetten N., Mol J., Koes R. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. The Plant Cell. 1999;11(8):1433-1444. DOI: 10.1105/tpc.11.8.1433
59. Rakhmangulov R.S. Application of the CRISPR/Cas system for gene editing in ornamental crops. Plant Biotechnology and Breeding. 2022;5(3):33-41. [in Russian]. DOI: 10.30901/2658-6266-2022-3-o1
60. Rakhmangulov R.S., Barabanov I.V., Erastenkova M.V., Ivanov A.A., Kovalenko T.V., Mezhina K.M. et al. The new directions in genetics, breeding and biotechnology of ornamental and berry crops in the N.I. Vavilov Institute of Plant Genetic Resources (VIR). Plant Biotechnology and Breeding. 2022;5(4):65-78. [in Russian]. DOI: 10.30901/2658-6266-2022-4-o3
61. Rakhmangulov R.S., Tikhonova N.G. Breeding of ornamental plants in Russia. Plant Biotechnology and Breeding. 2021;4(4):40-54. [in Russian]. DOI: 10.30901/2658-6266-2021-4-o4
62. Rosinski J.A., Atchley W.R. Molecular Evolution of the Myb family of transcription factors: evidence for polyphyletic origin. Journal of Molecular Evolution. 1998;46(1):74-83. DOI: 10.1007/pl00006285
63. Rothmaler W. Taxonomische Monographie der Gattung Antirrhinum. Berlin: Akademie Verlag; 1956. [in German]
64. Ryndin A.V., Mokhno V.S. Creating new genotypes in gerbera. Vestnik of the Russian Agricultural Science. 2012;(5):24-26. [in Russian].
65. Sannikova V.Yu. Genetic engineering as a way to obtain ornamental plants with a changed flower color. Plant Biotechnology and Breeding. 2020;3(1):40-45. [in Russian]. DOI: 10.30901/2658-6266-2020-1-o1
66. Schwarz-Sommer Z., Davies B., Hudson A. An everlasting pioneer: the story of Antirrhinum research. Nature Reviews. Genetics. 2003a;4(8):657-666. DOI: 10.1038/nrg1127
67. Schwarz-Sommer Z., de Andrade Silva E., Berndtgen R., Lönnig W.E., Müller A., Nindl I. et al. A linkage map of an F2 hybrid population of Antirrhinum majus and A. molle. Genetics. 2003b;163(2):699-710. DOI: 10.1093/genetics/163.2.699
68. Schwarz-Sommer Z., Gübitz T., Weiss J., Gómez-di-Marco P., Delgado-Benarroch L., Hudson A. et al. A molecular recombination map of Antirrhinum majus. BMC Plant Biology. 2010;10:275. DOI: 10.1186/1471-2229-10-275
69. Schwinn K., Venail J., Shang Y., Mackay S., Alm V., Butelli E. et al. A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. The Plant Cell. 2006;18(4):831-851. DOI: 10.1105/tpc.105.039255
70. Shang Y., Venail J., Mackay S., Bailey P.C., Schwinn K.E., Jameson P. et al. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. The New Phytologist. 2011:189(2);602-615. DOI: 10.1111/j.1469-8137.2010.03498.x
71. Shannon S., Meeks-Wagner D.R. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. The Plant Cell. 1991;3(9):877-892. DOI: 10.1105/tpc.3.9.877
72. Shoeva O.Yu., Khlestkina E.K. Anthocyanins participate in the protection of wheat seedlings against cadmium stress. Cereal Research Communications. 2018;46(2):242-252. DOI: 10.1556/0806.45.2017.070
73. Slepchenko N.A., Paschenko O.I. Composition and condition of perennial herbaceous flower crops collection of FRC SSC of RAS. Subtropical and Ornamental Horticulture. 2021;(76):66-80. [in Russian]. DOI: 10.31360/2225-3068-2021-76-66-80
74. Sommer H., Bonas U., Saedler H. Transposon-induced alterations in the promoter region affect transcription of the chalcone synthase gene of Antirrhinum majus. Molecular and General Genetics. 1988;211(1):49-55. DOI: 10.1007/BF00338392
75. Sommer H., Carpenter R., Harrison B.J., Saedler H. The transposable element Tam3 of Antirrhinum majus generates a novel type of sequence alterations upon excision. Molecular and General Genetics. 1985;199(2):225-231. DOI: 10.1007/BF00330263
76. Sommer H., Saedler H. Structure of the chalcone synthase gene of Antirrhinum majus. Molecular and General Genetics. 1986;202(3):429-434. DOI: 10.1007/BF00333273
77. Spelt C., Quattrocchio F., Mol J., Koes R. anthocyanin1 of petunia encodes a basic-helix loop helix protein that directly activates structural anthocyanin genes. The Plant Cell. 2000;12(9):1619-1631. DOI: 10.1105/tpc.12.9.1619
78. Sutton D.A. A revision of the tribe Antirrhineae. London: British Museum; 1988.
79. Tanaka Y., Sasaki N., Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal. 2008;54(4):733-749. DOI: 10.1111/j.1365313X.2008.03447.x
80. Tröbner W., Ramirez L., Motte P., Hue I., Huijser P., Lönnig W.E. et al. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. The EMBO Journal. 1992;11(13):4693-4704. DOI: 10.1002/j.1460-2075.1992.tb05574.x
81. Waites R., Hudson A. phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development. 1995;121(7):2143-2154. DOI: 10.1242/dev.121.7.2143
82. Walker A.R., Davison P.A., Bolognesi-Winfield A.C., James C.M., Srinivasan N., Blundell T.L. et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. The Plant Cell. 1999;11(7):1337-1350. DOI: 10.1105/tpc.11.7.1337
83. Wang J.L., Wang H.W., Cao Y.N., Kan S.L., Liu Y.Y. Comprehensive evolutionary analysis of the TCP gene family: further insights for its origin, expansion, and diversification. Frontiers in Plant Science. 2022;13:994567. DOI: 10.3389/fpls.2022.994567
84. Weberling F. Morphology of flowers and inflorescences. Cambridge: Cambridge University Press; 1989.
85. Zhang D., Yang Q., Bao W., Zhang Y., Han B., Xue Y. et al: Molecular cytogenetic characterization of the Antirrhinum majus genome. Genetics. 2005;169(1):325-335. DOI: 10.1534/genetics.104.031146
Review
For citations:
Barabanov I.V., Vasilieva M.V., Anisimova I.N., Rakhmangulov R.S. Snapdragon (Antirrhinum majus L.): a retrospective review of contemporary breeding. Proceedings on applied botany, genetics and breeding. 2025;186(1):210-223. (In Russ.) https://doi.org/10.30901/2227-8834-2025-1-210-223