Studying polymorphism of the gene CslF6 associated with β-D-glucan biosynthesis in diploid oat accessions of Avena strigosa Schreb. from the VIR collection
https://doi.org/10.30901/2227-8834-2025-1191-201
Abstract
Background. Oat is one of the most widespread and important cereal crops in the global agricultural production. Searching for new high-yielding and high-quality genotypes remains relevant, especially in the context of the global trend of climate change, when most local oat varieties may become economically ineffective.
Materials and methods. The material for this study included 50 local varieties of the diploid cultivated oat species Avena strigosa Schreb. from the VIR collection, having diverse geographical origins. The material was studied under the conditions of Pushkin and Pavlovsk Laboratories of VIR in 2023–2024. As a result of the study, main valuable agronomic traits and biochemical properties of grains were identified. The field testing of the oat collection was carried out on the basis of the guidelines for the study of the VIR collection; biochemical indicators were assessed using conventional techniques. Molecular genetic research methods (DNA isolation, polymerase chain reaction, and Sanger sequencing) were applied to contrasting oat accessions. The allelic state of the genes associated with the biosynthesis of β-glucans was analyzed.
Results and conclusion. The data are presented on the content of β-glucans, a group of soluble polysaccharides, in A. strigosa accessions from the VIR collection. The biochemical composition of diploid oat grains was studied, and the percentage of β-glucans was calculated. Using modern molecular genetic research methods, the allelic state of the key gene for the biosynthesis of this group of compounds, CslF6, was identified. Sanger sequencing of the gene’s coding part did not reveal any rearrangements in the nucleotide sequence of this gene.
About the Authors
N. A. ShvachkoRussian Federation
Nataliya A. Shvachko, Cand. Sci. (Biology), Leading Researcher
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
T. V. Semilet
Russian Federation
Tatyana V. Semilet, Associate Researcher
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
V. S. Popov
Russian Federation
Vitaliy S. Popov, Cand. Sci. (Engineering), Senior Researcher
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
E. V. Blinova
Russian Federation
Elena V. Blinova, Cand. Sci. (Agriculture), Senior Researcher
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
I. G. Loskutov
Russian Federation
Igor G. Loskutov, Dr. Sci. (Biology), Professor, Chief Researcher, Head of a Department, N.I. Vavilov All-Russian Institute of Plant Genetic Resources; Professor, St. Petersburg State University
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000;
7–9 Universitetskaya Emb., St. Petersburg 199034
References
1. Burton R.A., Jobling S.A., Harvey A.J., Shirley N.J., Mather D.E., Bacic A. et al. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiology. 2008;146(4):1821-1833. DOI: 10.1104/pp.107.114694
2. Burton R.A., Wilson S.M., Hrmova M., Harvey A.J., Shirley N.J., Medhurst A. et al. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1, 3; 1, 4)-beta-D-glucans. Science. 2006;311(5769):1940-1942. DOI: 10.1126/science.1122975
3. Cocuron J.C., Lerouxel O., Drakakaki G., Alonso A.P., Liepman A.H., Keegstra K. et al. A gene from the cellulose synthase-like C family encodes a beta-1,4 glucan synthase. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(20):8550-8555. DOI: 10.1073/pnas.0703133104
4. Ermakov A.I., Arasimovich V.V., Yarosh N.P., Peruanskiy Yu.V., Lukovnikova G.A., Ikonnikova M.I. Methods of biochemical research in plants (Metody biokhimicheskogo issledovaniya rasteniy). A.I. Ermakov (ed.). 3rd ed. Leningrad: Agropromizdat; 1987. [in Russian]
5. Farrokhi N., Burton R.A., Brownfield L., Hrmova M., Wilson S.M., Bacic A. et al. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnology Journal. 2006;4(2):145-167. DOI: 10.1111/j.1467-7652.2005.00169.x
6. Havrlentová M, Dvořáček V, Jurkaninová L, Gregusová V. Unraveling the potential of β-D-Glucans in Poales: from characterization to biosynthesis and factors affecting the content. Life (Basel). 2023;13(6):1387. DOI: 10.3390/life13061387
7. Hazen S.P., Scott-Craig J.S., Walton J.D. Cellulose synthaselike genes of rice. Plant Physiology. 2002;128(2):336-340. DOI: 10.1104/pp.010875
8. Integrated DNA Technologies. PrimerQuest Tool: [website]. Available from: https://eu.idtdna.com/primerquest/home [accessed Nov. 25, 2024].
9. Izydorczyk M.S., Dexter J.E. Barley β-glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products – a review. Food Research International. 2008;41(9):850-868. DOI: 10.1016/j.foodres.2008.04.001
10. Lante A., Canazza E., Tessari P. Beta-glucans of cereals: functional and technological properties. Nutrients. 2023;15(9):2124. DOI: 10.3390/nu15092124
11. Loskutov I.G. Oat (Avena L.). Distribution, systematics, evolution, and breeding value (Oves (Avena L.). Rasprostraneniye, sistematika, evolyutsiya i selekstionnaya tsennost). St Petersburg: VIR; 2007. [in Russian]
12. Loskutov I.G., Kovaleva O.N., Blinova E.V. Guidelines for the study and preservation of the world collection of barley and oats (Metodicheskiye ukazaniya po izucheniyu i sokhraneniyu mirovoy kollektsii yachmenya i ovsa). St. Petersburg: VIR; 2012. [in Russian]
13. Loskutov I.G., Rines H.W. Avena L. In: C. Kole (ed.). Wild Crop Relatives: Genomic and Breeding Resources. Heidelberg; Berlin: Springer; 2011. p.109-184. DOI: 10.1007/978-3-64214228-4_3
14. Noorbakhsh Varnosfaderani S.M., Ebrahimzadeh F., Akbari Oryani M., Khalili S., Almasi F., Mosaddeghi Heris R. et al. Potential promising anticancer applications of β-glucans: a review. Bioscience Reports. 2024;44(1):BSR20231686. DOI: 10.1042/BSR20231686
15. Okonechnikov K., Golosova O., Fursov M.; the UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166-1167. DOI: 10.1093/bioinformatics/bts091
16. Popov V.S., Khoreva V.I., Konarev A.V., Shelenga T.V., Blinova E.V., Malyshev L.L. et al. Evaluating germplasm of cultivated oat species from the VIR collection under the Russian northwest conditions. Plants (Basel). 2022;11(23):3280. DOI: 10.3390/plants11233280
17. Popov V.S., Perchuk I.N., Khoreva V.I. A gravimetric method for the quantitative determination of soluble β-glucan content in oat grain. Plant Biotechnology and Breeding. 2021;4(1):5-12. [in Russian]. DOI: 10.30901/26586266-2021-1-o1
18. Redaelli R., Del Frate V., Bellato S., Terracciano G., Ciccoritti R., Germeier C.U. et al. Genetic and environmental variability in total and soluble β-glucan in European oat genotypes. Journal of Cereal Science. 2013;57(2):193-199. DOI: 10.1016/j.jcs.2012.09.003
19. Redaelli R., Sgrulletta D., Scalfati G., De Stefanis E., Cacciatori P. Naked oats for improving human nutrition: genetic and agronomic variability of grain bioactive components. Crop Science. 2009;49(4):1431-1437. DOI: 10.2135/cropsci2008.04.0225
20. Richmond T.A., Somerville C.R. The cellulose synthase superfamily. Plant Physiology. 2000;124(2):495-498. DOI: 10.1104/pp.124.2.495
21. Rodionova N.A., Soldatov V.N., Merezhko V.E., Yarosh N.P., Kobylyansky V.D. Flora of cultivated plants. Vol. 2, Pt. 3. Oat (Kulturnaya flora. T. 2, ch. 3. Oves). Moscow: Kolos; 1994. [in Russian]
22. Shvachko N.A., Loskutov I.G., Semilet T.V., Popov V.S., Kovaleva O.N., Konarev A.V. Bioactive components in oat and barley grain as a promising breeding trend for functional food production. Molecules. 2021;26(8):2260. DOI: 10.3390/molecules26082260
23. Sushytskyi L., Synytsya A., Čopíková J., Lukáč P., Rajsiglová L., Tenti P. et al. Perspectives in the application of high, medium, and low molecular weight oat β-d-glucans in dietary nutrition and food technology – A short overview. Foods. 2023:7;12(6):1121. DOI: 10.3390/foods12061121
24. Sykut-Domańska E., Rzedzicki Z., Zarzycki P., Sobota A., Błaszczak W. Distribution of (1,3)(1,4)-β-D-glucans in grains of Polish oat cultivars and lines (Avena sativa L.). Polish Journal of Food and Nutrition Sciences. 2015;66(1):51-56. DOI: 10.1515/pjfns-2015-0012
25. Toole G.A., Le Gall G., Colquhoun I.J., Drea S., Opanowicz M., Bedö Z. et al. Spectroscopic analysis of diversity in the spatial distribution of arabinoxylan structures in endosperm cell walls of cereal species in the HEALTHGRAIN diversity collection. Journal of Cereal Science. 2012;56(2):134-141. DOI: 10.1016/j.jcs.2012.02.016
26. Vega-Sánchez M.E., Verhertbruggen Y., Christensen U., Chen X., Sharma V., Varanasi P. et al. Loss of Cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiology. 2012;159(1):5669. DOI: 10.1104/pp.112.195495
27. Zhang J., Yan L., Liu M., Guo G., Wu B. Analysis of β-d-glucan biosynthetic genes in oat reveals glucan synthesis regulation by light. Annals of Botany. 2021;127(3):371-380. DOI: 10.1093/aob/mcaa185
Review
For citations:
Shvachko N.A., Semilet T.V., Popov V.S., Blinova E.V., Loskutov I.G. Studying polymorphism of the gene CslF6 associated with β-D-glucan biosynthesis in diploid oat accessions of Avena strigosa Schreb. from the VIR collection. Proceedings on applied botany, genetics and breeding. 2025;186(1):191-201. (In Russ.) https://doi.org/10.30901/2227-8834-2025-1191-201