Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Molecular screening of rare cucurbit accessions for the presence of markers for genes and QTls controlling resistance to powdery mildew

https://doi.org/10.30901/2227-8834-2024-4-196-208

Abstract

Powdery mildew (Podosphaera xanthii (Castagne) Braun & Shishkoff ) is considered the most common disease of cucurbitaceous crops, especially in the northwestern and southern regions of Russia. For example, in Krasnodar Territory, the largest domestic squash producer, the damage from powdery mildew reaches 20–40%, which leads to significant economic losses. A possible solution to this problem is to increase the resistance of host plants to pathogens by introducing resistance genes from wild species or rare crop relatives, since other options, including the use of fungicides, can disrupt ecosystems and harm living organisms. Marker-assisted molecular breeding techniques make it possible to quickly identify necessary DNA fragments in order to find resistant and susceptible forms of donor plants. Assuming the presence of original genes for resistance to powdery mildew in rare cucurbits, we conducted molecular screening of 50 sponge gourd (Luffa cylindrica M. Roem.), 50 bottle gourd (Lagenaria siceraria (Molina) Standl.), and 10 Cucumis sp. accessions from the VIR collection for the presence of 15 markers of powdery mildew resistance genes known for widespread and rare cucurbitaceous crops, and clarified the effectiveness of 3 molecular markers.

About the Authors

E. N. Markova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources; Sirius University of Science and Technology, Research Center of Genetics and Life Sciences
Russian Federation

Elena N. Markova - Associate Researcher, N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Sirius University of Science and Technology, RC of Genetics and Life Sciences, 1 Olimpiysky Ave., Sirius Settlem., Sirius Federal Territory.

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000; Krasnodar Territory 354340



F. A. Berensen
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Fedor A. Berensen - Head of a Laboratory.

Morskaya Street, St. Petersburg 190000



I. V. Gashkova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Irina V. Gashkova - Cand. Sci. (Agriculture), Senior Researcher.

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



O. Yu. Antonova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Olga Yu. Antonova - Cand. Sci. (Biology), Leading Researcher.

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



References

1. Adeniji A.A., Coyne D.P. Genetics and nature of resistance to powdery mildew in crosses of butternut with calabaza squash and ‘Seminole Pumpkin’. Journal of the American Society for Horticultural Science. 1983;108(3):360-368. DOI: 10.21273/JASHS.108.3.360

2. Alavilli H., Lee J.J., You C.R., Poli Y., Kim H.J., Jain A. et al. GWAS reveals a novel candidate gene CmoAP2/ERF in pumpkin (Cucurbita moschata) involved in resistance to powdery mildew. International Journal of Molecular Sciences. 2022;23(12):6524. DOI: 10.3390/ijms23126524

3. Anarjan M.B., Bae I., Lee S. Marker-assisted evaluation of two powdery mildew resistance candidate genes in Korean cucumber inbred lines. Agronomy. 2021;11(11):2191. DOI: 10.3390/agronomy11112191

4. Antonova O.Yu., Klimenko N.S., Rybakov D.A., Fomina N.A., Zheltova V.V., Novikova L.Yu., Gavrilenko T.A. SSR analysis of modern Russian potato varieties using DNA samples of nomenclatural standards. Plant Biotechnology and Breeding. 2020;3(4):77-96. [in Russian] DOI: 10.30901/2658-6266-2020-4-o2

5. Bamgboye A.I., Oniya O.O. Fuel properties of loofah (Luffa cylindrica L.) biofuel blended with diesel. African Journal of Environmental Science and Technology. 2012;6(9):346-352. DOI: 10.5897/AJEST11.364

6. Berensen F.A., Piskunova T.M., Kuzmin S.V., Moskalu A.F., Antonova O.Yu., Artemyeva A.M. Molecular screening of squash and patisson squash collection samples using markers of the Pm-0 gene, which controls resistance to powdery mildew. Ecological Genetics. 2023;21(2):107-121. [in Russian] DOI: 10.17816/ecogen110988

7. Chomicki G., Renner S.S. Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytologist. 2015;205(2):526-532. DOI: 10.1111/nph.13163

8. Contin M.E., Munger H.M. Inheritance of powdery mildew resistance in interspecific crosses with Cucurbita martinezii. HortScience. 1977;12(4):397.

9. Demir H., Top A., Balköse D., Ulkü S. Dye adsorption behavior of Luffa cylindrica fibers. Journal of Hazardous Materials. 2008;153(1-2):389-394. DOI: 10.1016/j.jhazmat.2007.08.070

10. Dhillon N.P.S., Sanguansil S., Srimat S., Schafleitner R., Manjunath B., Agarwal P. et al. Cucurbit powdery mildewresistant bitter gourd breeding lines reveal four races of Podosphaera xanthii in Asia. HortScience. 2018;53(3):337-341. DOI: 10.21273/HORTSCI12545-17

11. Dorokhov D.B., Klocke E. A rapid and economic technique for RAPD analysis of plant genomes. Russian Journal of Genetics. 1997;33(4):443-450).

12. FAOSTAT. Food and Agriculture Organization of the United Nations. Statistics: [website]. Available from: https://www.fao.org/statistics/en [accessed Jun. 24, 2024].

13. Holdsworth W.L., LaPlant K.E., Bell D.C., Jahn M.M., Mazourek M. Cultivar-based introgression mapping reveals wild species-derived Pm-0, the major powdery mildew resistance locus in squash. PLoS One. 2016;11(12):e0167715. DOI: 10.1371/journal.pone.0167715

14. Karaca F., Yetişir H., Solmaz İ., Çandir E., Kurt Ş., Sarı N. Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: plant growth, yield and quality. Turkish Journal of Agriculture and Forestry. 2013;36:167-177. DOI: 10.3906/SAG-1211-92

15. Kim K.H., Hwang J.H., Han D.Y., Park M., Kim S., Choi D. et al. Major quantitative trait loci and putative candidate genes for powdery mildew resistance and fruitrelated traits revealed by an intraspecific genetic map for watermelon (Citrullus lanatus var. lanatus). PLoS One. 2015;10(12):e0145665. DOI: 10.1371/journal.pone.0145665

16. Lebeda A., Křístková E., Sedláková B., McCreight J.D., Coffey M.D. Cucurbit powdery mildews: methodology for objective determination and denomination of races. European Journal of Plant Pathology. 2016;144(2);399-410. DOI: 10.1007/s10658-015-0776-7

17. Lebeda A., Křístková E., Sedláková B., McCreight J.D., Coffey M.D. New concept for determination and denomination of pathotypes and races of cucurbit powdery mildew. In: M. Pitrat (ed.). Proceedings of the IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. Avignon, France, 21–24 May 2008. Avignon: INRA; 2008. p.125-134.

18. Ling K.S., Levi A. Sources of resistance to zucchini yellow mosaic virus in Lagenaria siceraria germplasm. HortScience. 2007;42(5):1124-1126. DOI: 10.21273/HORTSCI.42.5.1124

19. Ma L., Wang Q., Mu J., Fu A., Wen C., Zhao X. et al. The genome and transcriptome analysis of snake gourd provide insights into its evolution and fruit development and ripening. Horticulture Research. 2020;7(1):199. DOI: 10.1038/s41438-020-00423-9

20. McGrath M.T. Fungicide resistance in cucurbit powdery mildew: experiences and challenges. Plant Disease. 2001;85(3):236-245. DOI: 10.1094/PDIS.2001.85.3.236

21. Park B., Jang S., Yu Y., Choi G.J., Kang B., Seo S.T. QTL mapping and molecular markers of powdery mildew resistance in pumpkin (Cucurbita moschata). Horticultural Science and Technology. 2020;38(5):717-729. DOI: 10.7235/HORT.20200065

22. Piskunova T.M. Studying the global collection of pumpkin, marrow, pattypan and crookneck squashes and its maintenance in viable conditions: (guidelines). St. Petersburg: VIR; 2020. [in Russian] DOI: 10.30901/978-5-907145-21-4

23. PROSEA. Plant Resources of South-East Asia: [website]. Available from: https://prosea.prota4u.org [accessed Jun. 24, 2024].

24. Rai S., Sarkar R.K., Datta S., Rai U., Sindhu V. Recent advances in luffa vegetables. In: Futuristic Trends in Biotechnology. Chikkamagaluru: Iterative International Publishers; 2023. p.1-13. DOI: 10.58532/V2BS28CH1

25. Rehman S., Rashid A., Manzoor M.A., Li L., Sun W., Riaz M.W. et al. Genome-wide evolution and comparative analysis of superoxide dismutase gene family in Cucurbitaceae and expression analysis of Lagenaria siceraria under multiple abiotic stresses. Frontiers in Genetics. 2022;12:784878. DOI: 10.3389/fgene.2021.784878

26. Singh A.K. Cytogenetics and evolution in the Cucurbitaceae. In: D.M. Bates, R.W. Robinson, C. Jeffrey (eds). Biology and Utilization of Cucurbitaceae. Ithaca, NY: Cornell University Press; 1990. p.10-28. Available from: https://api.pageplace.de/preview/DT0400.9781501745447_A37645839/preview-9781501745447_A37645839.pdf [accessed Jun. 17, 2024].

27. State Register for Selection Achievements Admitted for Usage (National List). Vol. 1 “Plant varieties” (official publication). Moscow: Rosinformagrotech; 2019. [in Russian]

28. Varivoda O.P., Maslennikova E.S. Assessment and selection of source material for creating melon hybrids with integrated resistance to anthracnose and powdery mildew. Vegetable Crops of Russia. 2019;(5):20-24. [in Russian] DOI: 10.18619/2072-9146-2019-5-20-24

29. Wang L., Wu X., Wang B., Xu P., Li G. SCAR marker linked to resistance gene of powdery mildew in bottle gourd [Lagenaria siceraria (Molina) Standl.] breeding line J083. Journal of Zhejiang University. 2011;37(2):119-124. DOI: 10.3785/j.issn.1008-9209.2011.02.001

30. Xie D., Xu Y., Wang J., Liu W., Zhou Q., Luo S. et al. The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nature Communications. 2019;10(1):5158. DOI: 10.1038/s41467-019-13185-3

31. Yuste-Lisbona F.J., Capel C., Gómez-Guillamón M.L., Capel J., López-Sesé A.I., Lozano R. Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.). Theoretical and Applied Genetics. 2011:122(4);747-758. DOI: 10.1007/s00122-010-1483-6

32. Zhaoqing Quanfa Agricultural Development Co Ltd. Molecular marker related to towel gourd powdery mildew and application thereof. China; patent number: CN111996285B; 2021.


Supplementary files

1. Electronic Supplementary Materials, Suppl. 1
Subject Table S1. Results of testing the known molecular markers of powdery mildew resistance genes with DNA of rare pumpkin crops
Type Исследовательские инструменты
Download (107KB)    
Indexing metadata ▾
2. Electronic Supplementary Materials, Suppl. 2
Subject Fig. S1. Results of testing Cucumis sativus resistance gene markers with DNA samples of rare pumpkin crops.
Type Исследовательские инструменты
View (772KB)    
Indexing metadata ▾
3. Electronic Supplementary Materials, Suppl. 3
Subject Fig. S2. Results of testing Pm-0 gene markers with DNA samples of rare pumpkin crops.
Type Исследовательские инструменты
View (929KB)    
Indexing metadata ▾

Review

For citations:


Markova E.N., Berensen F.A., Gashkova I.V., Antonova O.Yu. Molecular screening of rare cucurbit accessions for the presence of markers for genes and QTls controlling resistance to powdery mildew. Proceedings on applied botany, genetics and breeding. 2024;185(4):196-208. (In Russ.) https://doi.org/10.30901/2227-8834-2024-4-196-208

Views: 183


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)