Analysis of genetic relationships in the breeding material of Prunus armeniaca L. from the collection of the Mountain Botanical Garden, Dagestan
https://doi.org/10.30901/2227-8834-2024-4-176-185
Abstract
Background. Dagestan boasts a long tradition of apricot cultivation that resulted in a unique gene pool of this fruit tree. However, the potential of local apricot cultivars for breeding still remains poorly investigated. This fact validates the need for further research into apricot genetic resources in Dagestan.
Materials and methods. The local breeding material of apricot (23 forms and 5 cultivars) underwent genetic evaluation. For convenience, all accessions were divided into 4 groups according to the origin of cvs. ‘Krasnoshchekiy’, ‘Krymskiy Medunets’, ‘Shalakh’, and ‘Bukhara’. Their genetic diversity was analyzed using 11 SSR markers. Polymorphism of SSR markers varied 2 to 10 alleles per locus (on average, 5 alleles per locus). The effective number of alleles (Ne) and the Shannon Diversity Index (I) showed low values for the set of accessions, which is typical for seedlings with shared parental forms in their pedigrees. The differences in Ne and I values between the most contrasting groups were insignificant: Ne = 2.719 and I = 1.085 for the Shalakh group versus Ne = 2.014 and I = 0.782 for the Krasnoshchekiy group.
Results. A comprehensive study of the apricot collection showed greater numbers of heterozygotes in hybrid seedlings than the expected values, attesting to large genetic distances between the pairs of parents selected for crosses. The highest heterozygosity was observed in the seedlings from the crosses ‘Krymskiy Medunets’ × ‘Krasnoshchekiy’, ‘Krasnoshchekiy’ × ‘Krymskiy Medunets’, and ‘Krymskiy Medunets’ × ‘Khonobakh’.
Conclusion. Clustering the accessions with the principal coordinates analysis and Bayesian analysis on the basis of their genotyping data made it possible to identify general patterns in the distribution of cultivars and seedlings, namely the concentration of seedlings next to their maternal parents. Two genotypes attributed to cv. ‘Bukhara’ were found to have different genetic origin.
About the Authors
D. M. AnatovRussian Federation
Dzhalaludin M. Anatov - Cand. Sci. (Biology), Senior Researcher.
45 M. Gadzhieva St., Makhachkala 367000, Republic of Dagestan
I. I. Suprun
Russian Federation
Ivan I. Suprun - Cand. Sci. (Biology), Head of a Functional Scientific Center.
39 40 let Pobedy St., Krasnodar 350901
I. V. Stepanov
Russian Federation
Ilya V. Stepanov - Associate Researcher.
39 40 let Pobedy St., Krasnodar 350901
R. M. Osmanov
Russian Federation
Ruslan M. Osmanov - Associate Researcher.
45 M. Gadzhieva St., Makhachkala 367000, Republic of Dagestan
S. V. Tokmakov
Russian Federation
Sergey V. Tokmakov - Cand. Sci. (Biology), Acting Head of a Laboratory.
39 40 let Pobedy St., Krasnodar 350901
References
1. Anatov D., Osmanov R. Phenotypic diversity of apricot cultivars derived from of Shalakh. variety. BIO Web of Conferences. 2021;34:02006. DOI: 10.1051/bioconf/20213402006
2. Anatov D.M., Suprun I.I., Stepanov I.V., Tokmakov S.V. Genetic diversity analysis of apricots from Dagestan using SSR markers. Proceedings on Applied Botany, Genetics and Breeding. 2022;183(4):132-140. DOI: 10.30901/2227-8834-2022-4-132-140
3. Asadulaev Z.M., Anatov D.M., Osmanov R.M. Apricot in Dagestan. Makhachkala: Printing House A4; 2020. [in Russian] URL: http://gorbotsad.ru/files/Apricot_in_Dagestan.pdf [дата обращения: 15.09.2023].
4. Bourguiba H., Batnini M.A., Krichen L., Trifi-Farah N., Audergon J.M. Population structure and core collection construction of apricot (Prunus armeniaca L.) in North Africa based on microsatellite markers. Plant Genetic Resources. 2015;15(1):21-28. DOI: 10.1017/S1479262115000313
5. Bourguiba H., Krichen L., Audergon J.M., Khadari B. Impact of mapped SSR markers on the genetic diversity of apricot (Prunus armeniaca L.) in Tunisia. Plant Molecular Biology Reporter. 2010;28(4):578-587. DOI: 10.1007/s11105-010-0189-x
6. Bourguiba H., Scotti I., Sauvage C., Zhebentyayeva T., Ledbetter C., Krška B. et al. Genetic structure of a worldwide germplasm collection of Prunus armeniaca L. reveals three major diffusion routes for varieties coming from the species’ center of origin. Frontiers in Plant Science. 2020;11:638. DOI: 10.3389/fpls.2020.00638
7. Dragavtseva I.A., Savin I.Yu., Klyukina A.V. Estimation of environmental resources of fruit trees’ bearing in the South of Russia in the conditions of a climate change (exemplified by apricot in Krasnodar Territory). Bulletin of the State Nikita Botanical Gardens. 2019;(132):37-44. [in Russian] DOI: 10.25684/NBG.boolt.132.2019.04
8. Eremin G.V., Zaremuk R.Sh., Alekhina E.M., Dragavtseva I.A., Eremina O.V., Eremin V.G. Atlas of the best fruit and berry crop cultivars in Krasnodar Territory. Vol. 2. Stone fruits (Atlas luchshikh sortov plodovykh i yagodnykh kultur Krasnodarskogo kraya. T. 2. Kostochkovye kultury). Krasnodar; 2009. [in Russian]
9. Gaziev M.A., Asadulaev Z.M., Abdullatipov R.A. Genetic resources of fruit crops in Mountain Dagestan: Albumcatalogue (Geneticheskiye resursy plodovykh kultur Gornogo Dagestana: Albom-katalog). Makhachkala: ALEF; 2009. [in Russian]
10. Gorina V.M., Korzin V.V., Lukicheva L.A., Polyanichenko E.V., Richter A.A. Annotated catalogue of cultivars and promising breeding forms of apricot from the collection of Nikita Botanical Gardens (Annotirovanny katalog sortov i perspektivnykh selektsionnykh form abrikosa kollektsii Nikitskogo botanicheskogo sada). Simferopol; 2020. [in Russian]
11. Gorina V.M., Smykov V.K., Richter A.A. Apricot genofund and the perspectives of its using. In: L.P. Simirenko, V.K. Smykov (eds). Collected Scientific Works. Vol. 132. Genofund of South Fruit Crops and Its Use. Yalta: State Nikita Botanical Gardens; 2010. p.95-106. [in Russian]
12. Hormaza J.I. Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theoretical and Applied Genetics. 2002;104(2-3):321-328. DOI: 10.1007/s001220100684
13. Khan M.A., Maghuly F., Borroto-Fernandez E.G., Pedryc A., Katinger H., Laimer M. Genetic diversity and population structure of apricot (Prunus armeniaca L.) from Northern Pakistan using simple sequence repeats. Silvae Genetica. 2008;57(1-6):157-164. DOI: 10.1515/sg-2008-0024
14. Kostina K.F. Apricot (Abrikos). Leningrad: VASKhNIL; 1936. [in Russian]
15. Krichen L., Audergon J.M., Trifi-Farah N. Assessing the genetic diversity and population structure of Tunisian apricot germplasm. Scientia Horticulturae. 2014;172(5):86-100. DOI: 10.1016/j.scienta.2014.03.038
16. Liu M.P., Du H.Y., Zhu G.P., Fu D.L., Tana W.Y. Genetic diversity analysis of sweet kernel apricot in China based on SSR and ISSR markers. Genetics and Molecular Research. 2015;14(3):9722-9729. DOI: 10.4238/2015.August.19.4
17. Lopes M.S., Sefc K.M., Laimer M., Da Câmara Machado A. Identification of microsatellite loci in apricot. Molecular Ecology Notes. 2002;2(1):24-26. DOI: 10.1046/j.1471-8286.2002.00132.x
18. Maghuly F., Borroto-Fernandez E.G., Zelger R., Marschall K., Katinger H., Laimer M. Genetic differentiation of apricot (Prunus armeniaca L.) cultivars with SSR markers. European Journal of Horticultural Science. 2006;71(3):129-134.
19. Maghuly F., Fernandez E.B., Ruthner Sz. Pedryc A., Laimer M. Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genetics and Genomes. 2005;1(4):151-165. DOI: 10.1007/s11295-005-0018-9
20. Martínez-Mora C., Rodríguez J., Cenis J.L., Ruiz-García L. Genetic variability among local apricots (Prunus armeniaca L.) from the Southeast of Spain. Spanish Journal of Agricultural Research. 2009;7(4):855-868. DOI: 10.5424/sjar/2009074-1099
21. Messina R., Lain O., Marrazzo M.T. Cipriani G., Testolin R. New set of microsatellite loci isolated in apricot. Molecular Ecology Notes. 2004;4(3):432-434. DOI: 10.1111/j.1471-8286.2004.00674.x
22. Murray M.G., Thompson W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research. 1980;8(19):4321-4325. DOI: 10.1093/nar/8.19.4321
23. Raji R., Jannatizadeh A., Fattahi R., Esfahlani M.A. Investigation of variability of apricot (Prunus armeniaca L.) using morphological traits and microsatellite markers. Scientia Horticulturae. 2014;176:225-231. DOI: 10.1016/j.scienta.2014.06.033
24. Results of the All-Russian Agricultural Census of 2016: In 8 volumes. Vol. 4. Arable areas under agricultural crops and areas under perennial plantations and berry crops. Book. 1. Areas under crops and perennial plantations (Itogi Vserossiyskoy selskokhozyaystvennoy perepisi 2016 goda: V 8 tomakh. T. 4. Posevnye ploshchadi selskokhozyaystvennykh kultur i ploshchadi mnogoletnikh nasazhdeniy i yagodnykh kultur. Kn. 1. Ploshchadi selskokhozyaystvennykh kultur i mnogoletnikh nasazhdeniy). Moscow: Statistika Rossii; 2018. [in Russian]
25. Romero C., Pedryc A., Muñoz V. Llacer G., Badenes M.L. Genetic diversity of different apricot geographical groups determined by SSR markers. Genome. 2003;46(2):244-252. DOI: 10.1139/g02-128
26. Sánchez-Pérez R., Ruiz D., Dicenta F. Egea J., MartínezGómez P. Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Scientia Horticulturae. 2005;103(3):305-315. DOI: 10.1016/j.scienta.2004.06.009
27. Smykov V.K. Apricot (Abrikos). Moscow: Agropromizdat; 1989. [in Russian] (Смыков В.К. Абрикос. Москва: Агропромиздат; 1989).
28. Stepanov I.V., Suprun I.I., Anatov D.M., Lobodina E.V., Osmanov R.M. SSR-analysis of some apricot varieties (Prunus armeniaca L.) of the Dagestan eco-geographical subgroup. Horticulture and Viticulture. 2019;(4):16-20. [in Russian] DOI: 10.31676/0235-2591-2019-4-16-20
29. Wang Z., Liu H., Liu J., Li Y., Wu R., Pang X. Mining new microsatellite markers for Siberian apricot (Prunus sibirica L.) from SSR-enriched genomic library. Scientia Horticulturae. 2014;166:65-69. DOI: 10.1016/j.scienta.2013.12.004
30. Yilmaz K.U., Gurcan K. Genetic diversity in apricot. In: M. Çalışkan (ed.). Genetic Diversity in Plants. London: InTech; 2012. p.249-270. DOI: 10.5772/33361
31. Yilmaz K.U., Paydas S., Dogan S., Kaf kas S. Genetic diversit y analysis based on ISSR, R APD and SSR among Turkish apricot germplasms in Iran Caucasian eco-geographical group. Scientia Horticulturae. 2012;138:138-143. DOI: 10.1016/j.scienta.2012.02.017
32. Zhang Q.P., Liu D.C., Liu S., Liu N., Wei X., Zhang A.M. et al. Genetic diversity and relationships of common apricot (Prunus armeniaca L.) in China based on simple sequence repeat (SSR) markers. Genetic Resources and Crop Evolution. 2013;61(2):357-368. DOI: 10.1007/s10722-013-0039-4
33. Zhebentyayeva T.N., Reighard G.L., Gorina V.M., Abbott A.G. Simple sequence repeat (SSR) analysis for assessment of genetic similarity in apricot germplasm. Theoretical and Applied Genetics. 2003;106(3):435-444. DOI: 10.1007/s00122-002-1069-z
Review
For citations:
Anatov D.M., Suprun I.I., Stepanov I.V., Osmanov R.M., Tokmakov S.V. Analysis of genetic relationships in the breeding material of Prunus armeniaca L. from the collection of the Mountain Botanical Garden, Dagestan. Proceedings on applied botany, genetics and breeding. 2024;185(4):176-185. (In Russ.) https://doi.org/10.30901/2227-8834-2024-4-176-185