Preview

Proceedings on applied botany, genetics and breeding

Advanced search

TFL1-like genes in Vigna unguiculata (L.) Walp. with different growth habit types

https://doi.org/10.30901/2227-8834-2024-4-143-149

Abstract

Background. Vigna unguiculata (L.) Walp. is among important legume crops. Agricultural producers prefer cultivars suitable for mechanized cultivation, with a determinate growth habit type. Plant architectonics depends on the functioning of the apical meristem, while the transition to the reproductive stage is controlled by a set of genes, including the TFL1 gene. Analyzing the genes responsible for the growth habit type is relevant for more efficient and rapid development of high-tech cultivars. Materials and methods. Using the Sanger DNA sequencing method, the primary structure of TFL1-like genes was studied in six cowpea accessions with different growth habit types and architectonics.

Results. Promoter regions and coding parts of TFL1-like genes (VuTFL1.1, VuTFL1.2, VuATC, and VuBFT) were sequenced and analyzed. Information about the genes is available in the NCBI nucleotide sequence database. A comparative study showed that there were no exon differences between different genotypes. Rearrangements were found in the introns and the promoter region, but no relationship was traced between these rearrangements and the phenotype in terms of growth habit types or architectonics.

Conclusion. The next step towards understanding the role of TFL1-like genes requires obtaining knockout lines based on these genes and studying their phenotype. Meanwhile, the results of this analysis call for a need to consider a wider range of cowpea genes potentially associated with the variability of stem growth habit types and plant architectonics.

About the Authors

E. A. Krylova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Ekaterina A. Krylova - Acting Senior Researcher.

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



E. K. Khlestkina
N.I. Vavilov All-Russian Institute of Plant Genetic Resources; Sirius University of Science and Technology, Research Center of Genetics and Life Sciences
Russian Federation

Elena K. Khlestkina - Dr. Sci. (Biology), Professor of the RAS, Director, N.I. Vavilov All-Russian Institute of PGR, Plant Biology and Biotechnology Research Manager, SU of Science and Technology, RC of Genetics and Life Sciences,

42, 44 Bolshaya Morskaya Street, St. Petersburg, 190000; 1 Olimpiysky Ave., Sirius Settlem., Sirius Federal Territory, Krasnodar Territory 354340



References

1. Benlloch R., Berbel A., Serrano-Mislata A., Madueño F. Floral initiation and inflorescence architecture: a comparative view. Annals of Botany. 2007;100(3):659-676. DOI: 10.1093/aob/mcm146

2. Dhanasekar P., Reddy K.S. A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata). Molecular Genetics and Genomics. 2015;290(1):55-65. DOI: 10.1007/s00438-014-0899-0

3. Chung K.S., Yoo S.Y., Yoo S.Y., Lee J.S., Ahn J.H. BROTHER OF FT AND TFL1 (BFT), a member of the FT/TFL1 family, shows distinct pattern of expression during the vegetative growth of Arabidopsis. Plant Signaling and Behavior. 2010;5(9):1102-1104. DOI: 10.4161/psb.5.9.12415

4. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research. 1988;16(22):10881-10890. DOI: 10.1093/nar/16.22.10881

5. Goodstein D.M., Shu S., Howson R., Neupane R., Hayes R.D., Fazo J. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research. 2012;40(D1):D1178D1186. DOI: 10.1093/nar/gkr944

6. Goretti D., Silvestre M., Collani S., Langenecker T., Méndez C., Madueño F. et al. TERMINAL FLOWER1 functions as a mobile transcriptional cofactor in the shoot apical meristem. Plant Physiology. 2020;182(4);2081-2095. DOI: 10.1104/pp.19.00867

7. Huang N.C., Jane W.N., Chen J., Yu T.S. Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. The Plant Journal. 2012;72(2):175-184. DOI: 10.1111/j.1365-313X.2012.05076.x

8. Integrated DNA Technologies. PrimerQuest Tool: [website]. Available from: https://eu.idtdna.com/primerquest/home [accessed Sept. 02, 2023].

9. Jin S., Nasim Z., Susila H., Ahn J.H. Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. Seminars in Cell and Developmental Biology. 2021;109:20-30. DOI: 10.1016/j.semcdb.2020.05.007

10. Krylova E., Strygina K., Khlestkina E. Structural organization of TFL1-like genes in representatives of the tribe Phaseoleae DC. Biological Communications. 2021;66(2):85-108. DOI: 10.21638/spbu03.2021.201

11. Krylova Е.А. The role of TFL1 orthologs in determining of plant architectonics. Russian Journal of Genetics. 2020;56(11):1308-1322. DOI: 10.1134/S1022795420110058

12. Krylova E.A., Chunikhina O.A., Boyko A.P., Miroshnichenko E.V., Khlestkina E.K., Burlyaeva M.O. Variability of morphological and phenological traits in Vigna unguiculata (L.) Walp. accessions contrasting by growth type in different ecological and geographical conditions. Plant Biotechnology and Breeding. 2024;7(2):16-30. DOI: 10.30901/2658-6266-2024-2-o7

13. Moraes T.S., Dornelas M.C., Martinelli A.P. FT/TFL1: calibrating plant architecture. Frontiers in Plant Science. 2019;10:97. DOI: 10.3389/fpls.2019.00097

14. MultAlin. Multiple sequence alignment with hierarchical clustering: [website]. Available from: http://multalin.toulouse. inra.fr/multalin [accessed Oct. 19, 2023].

15. Okonechnikov K., Golosova O., Fursov M.; the UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166-1167. DOI: 10.1093/bioinformatics/bts091

16. Périlleux C., Bouché F., Randoux M., Orman-Ligeza B. Turning meristems into fortresses. Trends in Plant Science. 2019;24(5):431-442. DOI: 10.1016/j.tplants.2019.02.004

17. Phytozome 13. The Plant Genomics Resource: [website]. Available from: https://phytozome-next.jgi.doe.gov [accessed Oct. 19, 2023].

18. Ryu J.Y., Lee H.J., Seo P.J., Jung J.H., Ahn J.H., Park C.M. The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity. Molecular Plant. 2014;7(2):377-387. DOI: 10.1093/mp/sst114

19. Ryu J.Y., Park C.M., Seo P.J. The floral repressor BROTHER OF FT and TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis. Molecules and Cells. 2011;32(3):295-304. DOI: 10.1007/s10059-011-0112-9

20. Weigel D., Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature. 1995;377(6549):495-500. DOI: 10.1038/377495a0

21. Yoo S.J., Chung K.S., Jung S.H., Yoo S.Y., Lee J.S., Ahn J.H. BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. The Plant Journal. 2010;63(2):241-253). DOI: 10.1111/j.1365-313X.2010.04234.x


Supplementary files

1. Electronic Supplementary Materials, Suppl. 1
Subject Multiple alignment of VuTFL1.1 performed with the MultAlin software. Identical nucleotides marked by red colour
Type Исследовательские инструменты
View (3MB)    
Indexing metadata ▾
2. Electronic Supplementary Materials, Suppl. 1. Continue
Subject Multiple alignment of VuTFL1.1 performed with the MultAlin software. Identical nucleotides marked by red colour
Type Исследовательские инструменты
View (3MB)    
Indexing metadata ▾
3. Electronic Supplementary Materials, Suppl. 2
Subject Multiple alignment of VuTFL1.2 performed with the MultAlin software. Identical nucleotides marked by red colour
Type Исследовательские инструменты
View (3MB)    
Indexing metadata ▾
4. Electronic Supplementary Materials, Suppl. 2. Continue
Subject Multiple alignment of VuTFL1.2 performed with the MultAlin software. Identical nucleotides marked by red colour
Type Исследовательские инструменты
View (3MB)    
Indexing metadata ▾
5. Electronic Supplementary Materials, Suppl. 3
Subject Multiple alignment of VuATC performed with the MultAlin software. Identical nucleotides marked by red colour
Type Исследовательские инструменты
View (3MB)    
Indexing metadata ▾
6. Electronic Supplementary Materials, Suppl. 3. Continue
Subject Multiple alignment of VuATC performed with the MultAlin software. Identical nucleotides marked by red colour
Type Исследовательские инструменты
View (3MB)    
Indexing metadata ▾
7. Electronic Supplementary Materials, Suppl. 4
Subject Multiple alignment of VuBFT performed with the MultAlin software. Identical nucleotides marked by red colour
Type Исследовательские инструменты
View (3MB)    
Indexing metadata ▾
8. Electronic Supplementary Materials, Suppl. 4. Continue
Subject Multiple alignment of VuBFT performed with the MultAlin software. Identical nucleotides marked by red colour
Type Исследовательские инструменты
View (3MB)    
Indexing metadata ▾

Review

For citations:


Krylova E.A., Khlestkina E.K. TFL1-like genes in Vigna unguiculata (L.) Walp. with different growth habit types. Proceedings on applied botany, genetics and breeding. 2024;185(4):143-149. (In Russ.) https://doi.org/10.30901/2227-8834-2024-4-143-149

Views: 174


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)