Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Comparative assessment of the photosynthetic pigment content among representatives of intraspecific taxa in Pisum sativum L.

https://doi.org/10.30901/2227-8834-2024-4-32-46

Abstract

Background. Higher content of photosynthetic pigments (PP) and longer time of their functioning increase the yield and resistance to abiotic stressors in plants. It is especially relevant for pea (Pisum sativum L.), since more and more leafless cultivars are introduced into production. Homologs of the STAY-GREEN gene (SGR), with mutations enabling leaves to photosynthesize longer, have been described for a number of crops, including pea. Therefore, searching for sources of higher PP levels throughout the entire pea growing season is promising for the crop’s yield increase.

Materials and methods. The analysis included 21 accessions of five P. sativum subspecies from the VIR collection. The content of chlorophyll (Chl a and Chl b), carotenoids, and chlorophyllide (Chlide a) in stipules was assessed on the first productive node at the start and the end of the seed-filling period.

Results. The analyzed accessions showed significant polymorphism in their PP content. Principal component analysis divided the material into two categories: with high and low PP content. Both included representatives of different intraspecific taxa. Wild pea accession k-3370 (subsp. elatius) had the highest PP content both at the start and the end of its seed-filling period, along with a significantly higher ratio of chlorophyll to chlorophyllide, a chlorophyll degradation product. The latter indicator attested to the resistance of chlorophyll to degradation during the completion of seed filling.

Conclusion. Accessions with high PP content, comparable with the highest values in wild accession k-3370 and exceeding the values in contemporary pea cultivars, can serve as sources of this trait for the development of new high-yielding genotypes. Primitive cultivated forms of subspp. transcaucasicum and asiaticum are especially valuable in this context. Since all the studied accessions represented the primary genepool of P. sativum, the trait can be transferred to the cultivars under development.

About the Authors

S. V. Bobkov
Federal Scientific Center of Legumes and Groat Crops
Russian Federation

Sergey V. Bobkov - Cand. Sci. (Agriculture), Leading Researcher.

10, bldg. 1, Molodezhnaya St., Streletsky Settlem., Orel 302502



K. A. Bashkirova
Federal Scientific Center of Legumes and Groat Crops
Russian Federation

Ksenia A. Bashkirova - Associate Researcher.

10, bldg. 1, Molodezhnaya St., Streletsky Settlem., Orel 302502



E. V. Semenova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Elena V. Semenova - Cand. Sci. (Biology), Leading Researcher.

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



M. A. Vishnyakova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Margarita A. Vishnyakova - Dr. Sci. (Biology), Chief Researcher.

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



References

1. Armstead I., Donnison I., Aubry S., Harper J., Hörtensteiner S., James C. et al. Cross-species identification of Mendel’s I locus. Science. 2007;315(5808):73. DOI: 10.1126/science.1132912

2. Bobkov S.V., Bashkirova K.A. Content of photosynthetic pigments in various organs of wild and cultural pea. Legumes and Groat Crops. 2021;4(40):15-23. [in Russian] DOI: 10.24412/2309-348X-2021-4-15-23

3. Bobkov S.V., Bychkov I.A. Content of photosynthetic pigments in ontogenesis of wild and cultural pea. Vestnik of Kazan State Agrarian University. 2021;4(60):4-14. [in Russian]

4. Bobkov S.V., Bychkov I.A. Contents of photosynthetic pigments and activity of oxidative stress enzymes in wild pea. Zemledelie = Crop Farming. 2018;(4):29-33. [in Russian] DOI: 10.24411/0044-3913-2018-10409

5. Chen J., Zhou H., Yuan X., He Y., Yan Q., Lin Y. et al. Homolog of pea SGR controls stay-green in faba bean (Vicia faba L.). Genes (Basel). 2023;14(5):1030. DOI: 10.3390/genes14051030

6. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York, NY: Routledge; 1988. DOI: 10.4324/9780203771587

7. Davis J.G., Myers J.R., McClean P.E., Lee R. Staygreen (SGR), a candidate gene for the persistent color phenotype in common bean. Acta Horticulturae. 2010;859:99-102. DOI: 10.17660/ActaHortic.2010.859.10

8. Dymova O.V., Golovko T.K. Photosynthetic pigments: functioning, ecology and biological activity. Proceedings of the RAS Ufa Scientific Centre. 2018;(3-4):5-16. [in Russian]

9. Govorov L.I. Pisum L. – Pea (Gorokh). In: N.A. Bazilevskaya, E.I. Barulina (eds). Flora of Cultivated Plants. Vol. IV. Grain Legumes (Zernovye bobovye). Moscow; 1937. p.229-336. [in Russian]

10. Harpaz-Saad S., Azoulay T., Arazi T., Ben-Yaakov E., Mett A., Shiboleth Y.M. et al. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. The Plant Cell. 2007;19(3):1007-1022. DOI: 10.1105/tpc.107.050633

11. Kof E.M., Kondykov I.V. Pea (Pisum sativum L.) growth mutants. International Journal of Plant Developmental Biology. 2007;1(1):141-146.

12. Kosterin O.E. On three cultivated subspecies of pea (Pisum sativum L.). Vavilov Journal of Genetics and Breeding. 2007;21(6):694-700. DOI: 10.18699/VJ17.287

13. Kosterin O.E., Bogdanova V.S. Relationship of wild and cultivated forms of Pisum L. as inferred from an analysis of three markers of the plastid, mitochondrial and nuclear genomes. Genetic Resources and Crop Evolution. 2008;55(5):735-755. DOI: 10.1007/s10722-007-9281-y

14. Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. 1987;148:350-382. DOI: 10.1016/0076-6879(87)48036-1

15. Makasheva R.Kh. Flora of cultivated plants. Vol. 4. Grain legumes. Part 1. Pea. Leningrad: Kolos; 1979. [in Russian]

16. Ney B., Duthion C., Fontaine E. Timing of reproductive abortions in relation to cell division, water content, and growth of pea seeds. Crop Science. 1993;33(2);267-270. DOI: 10.2135/cropsci1993.0011183X003300020010x

17. Novikova N.E., Kosikov A.O., Bobkov S.V., Zelenov A.A. The effects of late foliar fertilization and application of growth regulators on the yield and protein productivity of pea (Pisum sativum L.). Agricultural Chemistry. 2017;(1):32-40. [in Russian]

18. Porra R.J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research. 2002;73(1-3):149-156. DOI: 10.1023/A:1020470224740

19. Sato Y., Morita R., Nishimura M., Yamaguchi H., Kusaba M. Mendel’s green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(35):14169-14174. DOI: 10.1073/pnas.0705521104

20. Schrank F.P. Flora Monacensis. Vol. 4. Munich; 1818. Shi S., Miao H., Du X., Gu J., Xiao K. GmSGR1, a stay-green gene in soybean (Glycine max L.), plays an important role in regulating early leaf-yellowing phenotype and plant productivity under nitrogen deprivation. Acta Physiologiae Plantarum. 2016;38(4):97. DOI: 10.1007/s11738-016-2105-y

21. Shimoda Y., Ito H., Tanaka A. Arabidopsis STAY-GREEN, Mendel’s green cotyledon gene, encodes magnesium-dechelatase. The Plant Cell. 2016;28(9):2147-2160. DOI: 10.1105/tpc.16.00428

22. Sinjushin A., Semenova E., Vishnyakova M. Usage of morphological mutations for improvement of a garden pea (Pisum sativum): the experience of breeding in Russia. Agronomy. 2022;12(3):544. DOI: 10.3390/agronomy12030544

23. Sivasakthi К., Marques E., Kalungwana N., Carrasquilla-Garcia N., Chang P.L., Bergmann E.M. et al. Functional dissection of the chickpea (Cicer arietinum L.) stay-green phenotype associated with molecular variation at an ortholog of Mendel’s I gene for cotyledon color: implications for crop production and carotenoid biofortification. International Journal of Molecular Sciences. 2019;20(22):5562. DOI: 10.3390/ijms20225562

24. Szafrańska K., Reíter R.J., Posmyk M.M. Melatonin improves the photosynthetic apparatus in pea leaves stressed by paraquat via chlorophyll breakdown regulation and its accelerated de novo synthesis. Frontiers in Plant Science. 2017;8:878. DOI: 10.3389/fpls.2017.00878

25. Vishnyakova M.A., Yankov I.I., Bulyntsev S.V, Buravtseva T.V., Petrova M.V. Pea, beans, common bean… Cultivars. Growing. Storage. Applications (Gorokh, boby, fasol… Sorta. Vyrashchivaniye. Khraneniye. Primeneniye). St. Petersburg: Agropromizdat; 2001. [in Russian]

26. Wang Q., Xie W., Xing H., Yan J., Meng X., Li X. et al. Genetic architecture of natural variation in rice chlorophyll content revealed by a genome-wide association study. Molecular Plant. 2015;8(6):946-957. DOI: 10.1016/j.molp.2015.02.014

27. Wong A.C.S., van Oosterom E.J., Godwin I.D., Borrell A.K. Integrating stay-green and PIN-FORMED genes: PIN-FORMED genes as potential targets for designing climate-resilient cereal ideotypes, AoB PLANTS. 2023;15(4):plad040. DOI: 10.1093/aobpla/plad040

28. Zelenov A.N. Potential of heterophyllous form of peas and ways of its realization. Agrarian Russia. 2011;(3):13-16. [in Russian]

29. Zhao Y., Qiang C., Wang X., Chen Y., Deng J., Jiang C. et al. New alleles for chlorophyll content and stay-green traits revealed by a genome wide association study in rice (Oryza sativa). Scientific Reports. 2019;9(1):2541. DOI: 10.1038/s41598-019-39280-5

30. Zhou C., Han L., Pislariu C.I., Nakashima J., Fu C., Jiang Q. et al. From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiology. 2011;157(3):1483-1496. DOI: 10.1104/pp.111.185140


Review

For citations:


Bobkov S.V., Bashkirova K.A., Semenova E.V., Vishnyakova M.A. Comparative assessment of the photosynthetic pigment content among representatives of intraspecific taxa in Pisum sativum L. Proceedings on applied botany, genetics and breeding. 2024;185(4):32-46. (In Russ.) https://doi.org/10.30901/2227-8834-2024-4-32-46

Views: 269


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)