Restoration of the spike architectonics in ancient barley excavated at the twelfth-century settlement of Usvyaty
https://doi.org/10.30901/2227-8834-2024-3-199-209
Abstract
Background. The data are presented on the architectonics of ancient barley spikes from the 12th century, excavated in 2019 at Usvyaty Settlement. Modern molecular genetics approaches were used to study domestication genes (Btr1, Btr2, and Vrs) in ancient and contemporary barleys (germplasm accessions preserved at VIR).
Materials and methods. The carbonized kernels found by archaeologists during the excavations at Usvyaty were analyzed. Primers for domestication genes were designed, and PCR was performed on contemporary and ancient barley grains. Ancient kernels were studied in accordance with the rules established for organizing a paleogenetics laboratory, which excluded any contamination with contemporary DNA. Fragments of domestication genes from contemporary and ancient barley grain samples underwent Sanger sequencing.
Results. Ancient DNA was isolated and enriched. The analysis of domestication gene sequences made it possible to reconstruct the ancient barley spike’s features.
Conclusion. The ancient cereal crop architectonics was restored to ascertain a brittle two-row spike of ancient barley
About the Authors
T. V. SemiletRussian Federation
Tatyana V. Semilet, Associate Researcher
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
N. V. Smirnova
Russian Federation
Natalia V. Smirnova, Associate Researcher
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
N. A. Shvachko
Russian Federation
Nataliya A. Shvachko, Cand. Sci. (Biology), Leading Researcher, Head of a Laboratory
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
O. N. Kovaleva
Russian Federation
Olga N. Kovaleva, Cand. Sci. (Biology), Leading Researcher
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
E. K. Khlestkina
Russian Federation
Elena K. Khlestkina, Dr. Sci. (Biology), Professor of the RAS, Director; Plant Biology and Biotechnology Research Manager
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000;
1 Olimpiysky Ave., Sirius Settlem., Sirius Federal Territory, Krasnodar Territory 354340
References
1. Badr A., Sch K.M.R., El Rabey H., Effgen S., Ibrahim H.H., Pozzi C. et al. On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology and Evolution. 2000;17(4):499-510. DOI: 10.1093/oxfordjournals.molbev.a026330
2. Bennett K.D., Parducci L. DNA from pollen: principles and potential. The Holocene. 2006;16(8):1031-1034. DOI: 10.1177/0959683606069383
3. Bilgic H., Hakki E.E., Pandey A., Khan M.K., Akkaya M.S. Ancient DNA from 8400 year-old Çatalhöyük wheat: implications for the origin of neolithic agriculture. PLoS One. 2016;11(3): e0151974. DOI: 10.1371/journal.pone.0151974
4. Blatter R.H.E., Jacomet S., Schlumbaum A. Little evidence for the preservation of a single-copy gene in charred archaeological wheat. Ancient Biomolecules. 2002;4(2):65-77. DOI: 10.1080/1358612021000010677
5. Brown T.A., Allaby R.G., Brown K.A., O’Donoghue K., Sallares R. DNA in wheat seeds from European archaeological sites. Experientia. 1994;50(6):571-575. DOI: 10.1007/bf01921727
6. Bull H., Casao M.C., Zwirek M., Flavell A.J., Thomas W.T.B., Guo W. et al. Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nature Communications. 2017;8(1):936. DOI: 10.1038/s41467-017-00940-7
7. Campos P.F., Willerslev E., Sher A., Orlando L., Axelsson E., Tikhonov A. et al. Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(12):5675-5680. DOI: 10.1073/pnas.0907189107
8. Charles M., Bogaard A. Section 9.6. Charred plant macro-remains from Jeitun: implications for early cultivation and herding practices in western Central Asia. In: D.R. Harris (ed.). Origins of Agriculture in Western Central Asia: an Environmental-Archaeological Study. Philadelphia, PA: University of Pennsylvania Museum of Archaeology and Anthropology; 2010. p.150-165.
9. Costantini L. The beginning of agriculture in the Kachi plain: the evidence of Mehrgarh. In: B. Allchin (ed.). South Asian Archaeology 1981: Proceedings of the Sixth International Conference of the Association of South Asian Archaeologists in Western Europe; Cambridge University; 5–10 July 1981. Cambridge: Cambridge University Press; 1984. p.29-33.
10. Dabney J., Knapp M., Glocke I., Gansauge M.T., Weihmann A., Nickel B. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(39):15758-15763. DOI: 10.1073/pnas.1314445110
11. Druzhkova A.S., Vorobieva N.V., Trifonov V.A., Graphodatsky A.S. Ancient DNA: results and prospects (the 30th anniversary). Russian Journal of Genetics. 2015;51(6):627-643. [in Russian] DOI: 10.1134/S1022795415060046
12. Fernandez E., Thaw S., Brown T.A., Arroyo-Pardo E., Buxó R., Serret M.D. et al. DNA analysis in charred grains of naked wheat from several archaeological sites in Spain. Journal of Archaeological Science. 2013;40(1):659-670. DOI: 10.1016/j.jas.2012.07.014
13. Fulton T.L., Shapiro B. Setting up an ancient DNA laboratory. In: B. Shapiro, A. Barlow, P.D. Heintzman, M. Hofreiter, J.L.A. Paijmans, A.E.R. Soares (eds). Ancient DNA: Methods and Protocols. New York, NY: Humana; 2019. p.1-13. DOI: 10.1007/978-1-4939-9176-1_1
14. Goloubinoff P., Pääbo S., Wilson A.C. Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(5):1997-2001. DOI: 10.1073/pnas.90.5.1997
15. Goncharov N.P., Kondratenko E.Ja. Wheat origin, domestication and evolution. The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2008;12(1-2):159-177. [in Russian]
16. Hagelberg E., Hofreiter M., Keyser C. Introduction. Ancient DNA: the first three decades. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2015;370(1660):20130371. DOI: 10.1098/rstb.2013.0371
17. Harlan J.R. On the origin of barley. In: Barley: Origin, Botany, Culture, Winter Hardiness, Genetics, Utilization, Pests. USDA Agriculture Handbook 338. Washington, DC: USDA; 1979. p.10-36.
18. Helback H. Domestication of food plants in the Old World: joint efforts by botanists and archeologists illuminate the obscure history of plant domestication. Science. 1959;130(3372):365-372. DOI: 10.1126/science.130.3372.365
19. Higuchi R. Genetic study on the congenital dislocation of the hip. The Bulletin of Tokyo Medical and Dental University. 1984;31(4):195-207.
20. Hillman G. On the origins of domestic rye – Secale cereale: the finds from aceramic Can Hasan III in Turkey. Anatolian Studies. 1978;28:157-174. DOI: 10.2307/3642748
21. Komatsuda T., Tanno K. Comparative high resolution map of the six-rowed spike locus 1 (vrs1) in several populations of barley, Hordeum vulgare L. Hereditas. 2004;141(1):68-73. DOI: 10.1111/j.1601-5223.2004.01820.x
22. Koppolu R., Anwar N., Sakuma S., Tagiri A., Lundqvist U., Pourkheirandish M. et al. Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(32):13198-13203. DOI: 10.1073/pnas.1221950110
23. Leonard J.A., Shanks O., Hofreiter M., Kreuz E., Hodges L., Ream W. et al. Animal DNA in PCR reagents plagues ancient DNA research. Journal of Archaeological Science. 2007;34(9):1361-1366.
24. Lister D.L., Jones H., Jones M.K., O’Sullivan D.M., Cockram J. Analysis of DNA polymorphism in ancient barley herbarium material: validation of the KASP SNP genotyping platform. Taxon. 2013;62(4):779-789. DOI: 10.12705/624.9
25. Lister D.L., Jones H., Oliveira H.R., Petrie C.A., Liu X., Cockram J. et al. Barley heads east: Genetic analyses reveal routes of spread through diverse Eurasian landscapes. PLoS One. 2018;13(7):e0196652. DOI: 10.1371/journal.pone.0196652
26. McClung C.R. Circadian clock components offer targets for crop domestication and improvement. Genes (Basel). 2021;12(3):374. DOI: 10.3390/genes12030374
27. Newman C.W., Newman R.K. A brief history of barley foods. Cereal Foods World. 2006;51(1):4-7. DOI: 10.1094/CFW-51-0004
28. Okonechnikov K., Golosova O., Fursov M. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166-1167. DOI:10.1093/bioinformatics/bts091
29. Pääbo S., Higuchi R.G., Wilson A.C. Ancient DNA and the polymerase chain reaction. The emerging field of molecular archaeology. The Journal of Biological Chemistry. 1989;264(17):9709-9712.
30. Pankin A., von Korff M. Co-evolution of methods and thoughts in cereal domestication studies: a tale of barley (Hordeum vulgare). Current Opinion in Plant Biology. 2017;36:15-21. DOI: 10.1016/j.pbi.2016.12.001
31. Poinar H.N., Kuch M., Sobolik K.D., Barnes I., Stankiewicz A.B., Kuder T. et al. A molecular analysis of dietary diversity for three archaic Native Americans. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(8):4317-4322. DOI: 10.1073/pnas.061014798
32. Poinar H.N., Schwarz C., Qi J., Shapiro B., Macphee R.D., Buigues B. et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science. 2006;311(5759):392-394. DOI: 10.1126/science.1123360
33. Pourkheirandish M., Hensel G., Kilian B., Senthil N., Chen G., Sameri M. et al. Evolution of the grain dispersal system in barley. Cell. 2015;162(3):527-539. DOI: 10.1016/j.cell.2015.07.002
34. Ramsay L., Comadran J., Druka A., Marshall D.F., Thomas W.T.B., Macaulay M. et al. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nature Genetics. 2011;43(2):169-172. DOI: 10.1038/ng.745
35. Reich D., Green R.E., Kircher M., Krause J., Patterson N., Durand E.Y. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010;468(7327):1053-1060. DOI: 10.1038/nature09710
36. Riehl S., Pustovoytov K.E., Weippert H., Klett S., Hole F. Drought stress variability in ancient Near Eastern agricultural systems evidenced by δ13C in barley grain. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(34):12348-12353. DOI: 10.1073/pnas.1409516111
37. Semilet T., Shvachko N., Smirnova N., Shipilina L., Khlestkina E. Using DNA markers to reconstruct the lifetime morphology of barley grains from carbonized cereal crop remains unearthed at Usvyaty Settlement. Biological Communications. 2023;68(1):3-9. DOI: 10.21638/spbu03.2023.101
38. Takahashi R., Hayashi J. Linkage study of two complementary genes for brittle rachis in barley. Berichte des Ohara Instituts für landwirtschaftliche Biologie, Okayama Universität.1964;12(2):99-105.
39. Van Esse G.W., Walla A., Finke A., Koornneef M., Pecinka A., von Korff M. Six-Rowed Spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiology. 2017;174(4):2397-2408. DOI: 10.1104/pp.17.00108
40. Wales N., Kistler L. Extraction of ancient DNA from plant remains. Methods in Molecular Biology. 2019;1963:45-55. DOI: 10.1007/978-1-4939-9176-1_6
41. Weyrich L.S., Dobney K., Cooper A. Ancient DNA analysis of dental calculus. Journal of Human Evolution. 2015;79:119-124. DOI: 10.1016/j.jhevol.2014.06.018
42. Willerslev E., Hansen A.J., Poinar H.N. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends in Ecology and Evolution. 2004;19(3):141-147. DOI: 10.1016/j.tree.2003.11.010
43. Youssef H.M., Eggert K., Kopplu R., Alqudah A.M., Poursarebani N., Fazeli A. et al. VRS2 regulates hormone-mediated inflorescence patterning in barley. Nature Genetics. 2017;49:157-161. DOI: 10.1038/ng.3717
Review
For citations:
Semilet T.V., Smirnova N.V., Shvachko N.A., Kovaleva O.N., Khlestkina E.K. Restoration of the spike architectonics in ancient barley excavated at the twelfth-century settlement of Usvyaty. Proceedings on applied botany, genetics and breeding. 2024;185(3):199-209. (In Russ.) https://doi.org/10.30901/2227-8834-2024-3-199-209