Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Assessment of grain starch content and responses to CMS-S and CMS-C in high-starch maize hybrids

https://doi.org/10.30901/2227-8834-2024-3-166-179

Abstract

Background. Increasing the production of native and modified starch from maize requires raw materials with high starch content in grain.
Materials and methods. An experimental panel of 780 simple high-starch maize hybrids produced with CMS-S and CMS-C lines underwent two-year testing. Starch content in the grain of the lines and their hybrids was assessed with IR spectrometry. Native starch content in the grain of hybrids with highest yields was measured at the All-Russian Research Institute of Starch and Starch-Containing Raw Materials Processing using the method proposed by L. P. Nosovskaya with coauthors. Responses to CMS were scored according to G. S. Galeev’s scale.
Results. Grain starch content was found to vary from 58% to 72% DMB throughout the tested panel. IR spectrometry helped to identify 22 hybrids with high (72.03–72.67%) starch content, and 5 hybrids promising for deep grain processing, combining high protein (10.3–13.53%) and oil (3.77–5.03%) levels with high starch content (69.02–70.4%) in their grain. Native starch extraction using L. P. Nosovskaya’s method showed that grain starch content in the best 68 hybrids ranged from 70.03 to 71.95% DMB. The collection was ranked according to the main heterotic groups: 57 lines of Iowa Dent, 26 lines of Stiff Stalk Synthetic, and 28 lines of Lancaster. For CMS-S and CMS-C types, 33 and 6 maintainers, and 9 and 8 restorers were selected, respectively. The hybrids were distributed across the following FAO maturity groups for maize: FAO 200–299 (14 hybrids), FAO 300–399 (7), FAO 400–449 (21), and FAO 450–500 (29).
Conclusion. Assessing agronomic and breeding prospects of the best 68 hybrids between high-starch maize lines and sterile testers proved their potential for producing native starch to at least 70–72% DMB. Five hybrids were identified as promising for yielding native starch (69.02–70.4% DMB), as well as protein (10.3–13.5% DMB) and oil (3.77–5.03% DMB) by-products during deep grain processing.

About the Authors

M. R. Firsova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Milana R. Firsova, Postgraduate Student 

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



B. R. Shomakhov
Kabardin-Balkar Scientific Center of the Russian Academy of Sciences
Russian Federation

Beslan R. Shomakhov, Senior Researcher 

224 Kirova St., Nalchik 360004



R. S. Kushkhova
Kabardin-Balkar Scientific Center of the Russian Academy of Sciences
Russian Federation

Rita S. Kushkhova, Researcher 

224 Kirova St., Nalchik 360004



Z. T. Khashirova
Kabardin-Balkar Scientific Center of the Russian Academy of Sciences
Russian Federation

Zinaida T. Khashirova, Associate Researcher 

224 Kirova St., Nalchik 360004



R. A. Kudaev
Kabardin-Balkar Scientific Center of the Russian Academy of Sciences
Russian Federation

Ruslan A. Kudaev, Researcher 

224 Kirova St., Nalchik 360004



A. Kh. Gyaurgiev
Kabardin-Balkar Scientific Center of the Russian Academy of Sciences
Russian Federation

Azamat Kh. Gyaurgiev, Associate Researcher 

224 Kirova St., Nalchik 360004



S. P. Appaev
Kabardin-Balkar Scientific Center of the Russian Academy of Sciences
Russian Federation

Safar P. Appaev, Cand. Sci. (Agriculture), Leading Researcher 

224 Kirova St., Nalchik 360004



A. M. Kagermazov
Kabardin-Balkar Scientific Center of the Russian Academy of Sciences
Russian Federation

Alan M. Kagermazov, Cand. Sci. (Agriculture), Researcher 

224 Kirova St., Nalchik 360004



A. V. Khachidogov
Kabardin-Balkar Scientific Center of the Russian Academy of Sciences
Russian Federation

Azamat V. Khachidogov, Cand. Sci. (Agriculture), Researcher 

224 Kirova St., Nalchik 360004



A. I. Buzurtanov
Ingush Scientific Research Institute of Agriculture
Russian Federation

Aslanbek I. Buzurtanov, Researcher 

50 Oskanova St., Sunzha 386203, Republic of Ingushetia



K. Sh. Badurgova
Ingush Scientific Research Institute of Agriculture
Russian Federation

Kulsum Sh. Badurgova, Cand. Sci. (Agriculture), Leading Researcher 

50 Oskanova St., Sunzha 386203, Republic of Ingushetia



M. A. Bazgiev
Ingush Scientific Research Institute of Agriculture
Russian Federation

Magomed A. Bazgiev, Cand. Sci. (Agriculture), Leading Researcher 

50 Oskanova St., Sunzha 386203, Republic of Ingushetia



V. G. Goldshtein
Russian Potato Research Center, All-Russian Research Institute of Starch and Starch-Containing Raw Materials Processing
Russian Federation

Vladimir G. Goldshtein, Cand. Sci. (Engineering), Head of a Department 

11 Nekrasova St., Kraskovo Settlem., Lyuberetsky District, Moscow Province 140051



V. I. Khoreva
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Valentina I. Khoreva, Cand. Sci. (Biology), Leading Researcher 

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



E. B. Khatefov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Eduard B. Khatefov, Dr. Sci. (Biology), Leading Researcher 

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



References

1. Abu-Ghannam N., Balboa E. Biotechnological, food, and health care applications. In: C.M. Galanakis (ed.). Woodhead Sustainable Recovery and Reutilization of Cereal Processing By-Products: A volume in Woodhead Publishing Series in Food Science, Technology and Nutrition. Cambridge: Woodhead Publishing Inc.; 2018. р.253-278. DOI: 10.1016/B978-0-08-102162-0.00009-5

2. Burrell M.M. Starch: the need for improved quality or quantity – an overview. Journal of Experimental Botany. 2003;54(382):451-456. DOI: 10.1093/jxb/erg049

3. BusinesStat. Analysis of the starch market in Russia in 2017–2021, forecast for 2022–2026. Market prospects under sanctions (BusinesStat. Analiz rynka krakhmala v Rossii v 2017–2021 gg, prognoz na 2022–2026 gg. Perspektivy rynka v usloviyakh sanktsiy). BusinesStat; 2022. [in Russian] URL: https://marketing.rbc.ru/research/27441/ [дата обращения: 01.08.2023].

4. Dospekhov B.A. Methodology of field trial (with fundamentals of statistical processing of research results) (Metodika polevogo opyta [s osnovami statisticheskoy obrabotki rezultatov issledovaniy]). 6th ed. Moscow: Alyans; 2011. [in Russian]

5. Gabay-Laughnan S., Kuzmin E.V., Monroe J., Roark L., Newton K.J., Characterization of a novel thermosensitive restorer of fertility for cytoplasmic male sterility in maize. Genetics. 2009;182(1):91-103. DOI: 10.1534/genetics.108.099895

6. Goldshtein V.G., Nosovskayа L.P., Adikaeva L.V. About processing of by-products from corn grain into starch. Innovatsionnye tekhnologii proizvodstva i khraneniya materialnykh tsennostey dlya gosudarstvennykh nuzhd = Innovative Technologies for the Production and Storage of Material Assets for National Needs. 2015;4(4):46-52. [in Russian]

7. Goldstein V., Lukin N., Radin O. By-products of starch-andtreacle production as feed components. Compound Feeds. 2018;7(8);54-56. [in Russian] DOI: 10.25741/2413-287X-2018-07-3-012

8. GOST 10845-98. Interstate standard. Cereals and cereal milled products. Method for determination of starch. Official edition. Minsk: Interstate Council for Standardization, Metrology and Certification; Moscow: Standartinform; 2009. [in Russian] URL: https://files.stroyinf.ru/Data/88/8817.pdf [дата обращения: 01.08.2023].

9. Guidelines for conducting field experiments with maize (Metodicheskiye rekomendatsii po provedeniyu polevykh opytov s kukuruzoy). Dnepropetrovsk: All-Union Research Institute of Maize; 1980. [in Russian]

10. Hallauer A.R., Russell W.A., Lamkey K.R. Corn breeding. In: G.F. Sprague, J.W. Dudley (eds). Corn and Corn Improvement. Agronomy Monographs. Volume 18. 3rd ed. Madison, WI: American Society of Agronomy; Crop Science Society of America; Soil Science Society of America; 1988. p.463-564. DOI: 10.2134/agronmonogr18.3ed.c8

11. Jaqueth J.S., Hou Z., Zheng P., Ren R., Nagel B.A., Cutter G. et al. Fertility restoration of maize CMS-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. The Plant Journal. 2020;101(1):101-111. DOI: 10.1111/tpj.14521

12. Kamps T.L., Chase C.D. FLP mapping of the maize gametophytic restorer-of-fertility locus (rf3) and aberrant pollen transmission of the nonrestoring rf3 allele. Theoretical and Applied Genetics. 1997;95:525-531. DOI: 10.1007/s001220050593

13. Kaur B., Ariffin F., Bhat R., Karim A.A. Progress in starch modification in the last decade. Food Hydrocolloids. 2012;26(2):398-404. DOI:10.1016/j.foodhyd.2011.02.016

14. Kim Y.J., Zhang D. Molecular control of male fertility for crop hybrid breeding. Trends in Plant Science. 2018;23(1):53-65. DOI: 10.1016/j.tplants.2017.10.001

15. Kukekov V.G. (comp.). Broad unified COMECON list of descriptors and international COMECON list of descriptors for sp. Zea mays L. Leningrad: VIR; 1977. [in Russian]

16. Laughnan J.R., Gabay S.J. Nuclear and cytoplasmic mutations to fertility in S male-sterile maize. In: Walden (ed.). Maize Breeding and Genetics. New York, NY: Wiley; 1978. p.427-447.

17. Pajić Z., Radosavljević M., Filipović M., Todorović G., Srdić J., Pavlov M. Breeding of specialty maize for industrial purposes. Genetika. 2010;42(1):57-66. DOI: 10.2298/GENSR1001057P

18. Pollak L.M., Scott M.P. Breeding for grain quality traits. Maydica. 2005;50(3):247-257.

19. Shmaraev G.E., Matveeva G.V. Study and maintenance of the maize collection accessions. Guidelines (Izucheniye i podderzhaniye obraztsov kollektsii kukuruzy. Metodicheskiye ukazaniya). Leningrad: VIR; 1985. [in Russian]

20. Sinha A.K., Kumar V., Makkar H.P.S., De Boeck G., Becker K. Non-starch polysaccharides and their role in fish nutrition – A review. Food Chemistry. 2011;127(4):1409-1426. DOI: 10.1016/j.foodchem.2011.02.042

21. Sisco P.H. Duplications complicate genetic mapping of Rf4, a restorer gene for cms-C cytoplasmic male sterility in corn. Crop Science. 1991;31(5):1263-1266. DOI: 10.2135/cropsci1991.0011183X003100050036x

22. Somavat P., Liu W., Singh V. Wet milling characteristics of corn mutants using modified processes and improving starch yields from high amylose corn. Food and Bioproducts Processing. 2021;126:104-112. DOI: 10.1016/j.fbp.2020.12.015

23. Sotchenko V.S. Maize breeding, seed production, and cultivation technology (Selektsiya, semenovodstvo, tekhnologiya vozdelyvaniya kukuruzy). Pyatigorsk; 2009. [in Russian]

24. StatSoft Russia: [website]. [in Russian] URL: https://1soft.space/en/statsoft-statistica/ [дата обращения: 11.07.2023].

25. Tang J.H., Liu Z.H., Chen W.C., Hu Y.M., Ji H.Q., Ji L.Y. The SSR markers of the main restorer genes for cms-C cytoplasmic male sterility in maize. Scientia Agricultura Sinica. 2001;34:592-596.

26. Tie S., Xia J., Qiu F., Zheng Y. Genome-wide analysis of maize cytoplasmic male sterility-S based on QTL mapping. Plant Molecular Biology Reporter. 2006;24:71-80. DOI: 10.1007/BF02914047

27. Ullstrup A.J. The impacts of the southern corn leaf blight epidemics of 1970–1971. Annual Review of Phytopathology. 1972;10:37-50. DOI: 10.1146/annurev.py.10.090172.000345

28. Watson S.A. Description, development, structure, and composition of the corn kernel. In: P.J. White, L.A. Johnson (eds). Corn Chemistry and Technology. 2nd ed. St. Paul, MN: American Association of Cereal Chemists; 2003. p.69-106.

29. Weider C., Stamp P., Christov N., Hüsken A., Foueillassar X., Camp K.H. et al. Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Science. 2009;49(1):77-84. DOI: 10.2135/cropsci2007.12.0694

30. Zhang R., Ma S., Li L., Zhang M., Tian Sh., Wang D. et al. Comprehensive utilization of corn starch processing by-products: A review, Grain and Oil Science and Technology. 2021;4(3):89-107. DOI: 10.1016/j.gaost.2021.08.003

31. Zhang Z.F., Wang Y., Zheng Y.L. AFLP and PCR-based markers linked to Rf3, a fertility restorer gene for S cytoplasmic male sterility in maize. Molecular Genetics and Genomics. 2006;276(2):162-169. DOI: 10.1007/s00438-006-0131-y

32. Zheng H., Wang H., Yang H., Wu J, Shi B., Cai R. et al. Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PLoS One. 2013;8(6):e66606. DOI: 10.1371/journal.pone.0066606


Review

For citations:


Firsova M.R., Shomakhov B.R., Kushkhova R.S., Khashirova Z.T., Kudaev R.A., Gyaurgiev A.Kh., Appaev S.P., Kagermazov A.M., Khachidogov A.V., Buzurtanov A.I., Badurgova K.Sh., Bazgiev M.A., Goldshtein V.G., Khoreva V.I., Khatefov E.B. Assessment of grain starch content and responses to CMS-S and CMS-C in high-starch maize hybrids. Proceedings on applied botany, genetics and breeding. 2024;185(3):166-179. (In Russ.) https://doi.org/10.30901/2227-8834-2024-3-166-179

Views: 175


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)