Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Seedling resistance of winter and spring bread wheat cultivars to Pyrenophora tritici-repentis

https://doi.org/10.30901/2227-8834-2024-2-95-105

Abstract

   Background. The fungus causing tan spot on wheat leaves, Pyrenophora tritici-repentis (Ptr), continues to expand its range and inflict severe damage to the crop. Development of resistant cultivars remains the most effective and environmentally friendly way of disease control.

   The objective was to characterize modern domestic cultivars of bread wheat (Triticum aestivum L.) according to their seedling resistance to geographically different Ptr populations, identify sources of Ptr resistance, locate the presence of dominant Tsn1 alleles in cultivars, and assess their relationship with Ptr susceptibility.

   Materials and methods. Ptr resistance was assessed in 76 winter bread wheat cultivars from the VIR collection, and 4 winter and 43 spring bread wheat cultivars from the Volga region. Isolates from the Krasnodar, Tambov, Tatarstan and Altai Ptr populations (2022) served as the inoculum. Dominant Tsn1 alleles were identified by PCR using the Xfcp623 marker.

   Results. Bread wheat cultivars were characterized for the type of response in the leaves of their seedlings to isolates from Ptr populations and the presence/absence of dominant Tsn1 alleles. Resistance to isolates from two or three Ptr populations was observed in 11 winter and 13 spring cultivars. Differences between winter and spring forms in their resistance levels were
shown. Dominant Tsn1 alleles were identified in 26 cultivars. No statistically significant association was found between the presence/absence of dominant Tsn1 alleles and the manifestation of resistance/susceptibility to Ptr.

   Conclusion. The disclosed diversity of bread wheat cultivars in their responses to the infection with isolates of different Ptr populations may be due to their differences in the alleles of Ptr resistance/susceptibility genes as well as the presence of still unknown effector genes in the pathogen’s genome. Cultivars resistant to two or three Ptr populations can be used by breeders as sources of seedling resistance.

About the Authors

N. V. Mironenko
All-Russian Research Institute of Plant Protection
Russian Federation

Nina V. Mironenko, Dr. Sci. (Biology), Leading Researcher

196608; 3 Podbelskogo Hwy.; St. Petersburg; Pushkin



N. M. Kovalenko
All-Russian Research Institute of Plant Protection
Russian Federation

Nadezhda M. Kovalenko, Cand. Sci. (Biology), Leading Researcher

196608; 3 Podbelskogo Hwy.; St. Petersburg; Pushkin



O. A. Baranova
All-Russian Research Institute of Plant Protection
Russian Federation

Olga A. Baranova, Cand. Sci. (Biology), Leading Researcher

196608; 3 Podbelskogo Hwy.; St. Petersburg; Pushkin



A. G. Khakimova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Anida G. Khakimova, Cand. Sci. (Biology), Leading Researcher

190000; 42, 44 Bolshaya Morskaya Street; St. Petersburg



O. P. Mitrofanova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Olga P. Mitrofanova, Dr. Sci. (Biology), Chief Researcher

190000; 42, 44 Bolshaya Morskaya Street; St. Petersburg



References

1. Ciuffetti L.M., Manning V.A., Pandelova I., Betts M.F. Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis–wheat interaction. New Phytologist. 2010;187(4):911-919. DOI: 10.1111/j.1469-8137.2010.03362.x

2. Dinglasan E., Godwin I.D., Mortlock M.Y., Hickey L.T. Resistance to yellow spot in wheat grown under accelerated growth conditions. Euphytica. 2016;209(3):693-707. DOI: 10.1007/s10681-016-1660-z

3. Dinglasan E.G., Singh D., Shankar M., Afanasenko O., Platz G., Godwin I.D. et al. Discovering new alleles for yellow spot resistance in the Vavilov wheat collection. Theoretical and Applied Genetics. 2019;132(1):149-162. DOI: 10.1007/s00122-018-3204-5

4. Faris J.D., Abeysekara N.S., McClean P.E., Xu S.S., Friesen T.L. Tan spot susceptibility governed by the Tsn1 locus and race nonspecific resistance quantitative trait loci in a population derived from the wheat lines Salamouni and Katepwa. Molecular Breeding. 2012;30(4):1669-1678. DOI: 10.1007/s11032-012-9750-7

5. Faris J.D., Liu Z., Xu S.S. Genetics of tan spot resistance in wheat. Theoretical and Applied Genetics. 2013;126(9):2197-2217. DOI: 10.1007/s00122-013-2157-y

6. Faris J.D., Zhang Z., Lu H., Lu S., Reddy L., Cloutier S. et al. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(30):13544-13549. DOI: 10.1073/pnas.1004090107

7. Friesen T.L., Faris J.D., Solomon P.S., Oliver R.P. Host-specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiology. 2008;10(7):1421-1428. DOI: 10.1111/j.1462-5822.2008.01153.x

8. Friesen T.L., Stukenbrock E.H., Liu Z., Meinhardt S., Ling H., Faris J.D. et al. Emergence of a new disease as a result of interspecific virulence gene transfer. Nature Genetics. 2006;38(8):953-956. DOI: 10.1038/ng1839

9. Guo J., Shi G., Liu Z. Characterizing virulence of the Pyrenophora tritici-repentis isolates lacking both ToxA and ToxB genes. Pathogens. 2018;7(3):74. DOI: 10.3390/pathogens7030074

10. Kim Y.S., Volkova G.V. Spackled yellows of wheat leaves: distribution, injuriousness, racial composition (review). Vestnik of Ulyanovsk State Agricultural Academy. 2020;2(50):105-116. [in Russian] DOI: 10.18286/1816-4501-2020-2-105-116

11. Kokhmetova A., Sehgal D., Ali S., Atishova M., Kumarbayeva M., Leonova I. et al. Genome-wide association study of tan spot resistance in a hexaploid wheat collection from Kazakhstan. Frontiers in Genetics. 2021;11:581214. DOI: 10.3389/fgene.2020.581214

12. Kokhmetova A.M., Kremneva O.Y., Volkova G., Atishova M.N., Sapakhova Z. Evaluation of wheat cultivars growing in Kazakhstan and Russia for resistance to tan spot. Journal of Plant Pathology. 2017;99(1):161-167. URL: https://elibrary.ru/item.asp?edn=xnmcgh&ysclid=lyr971jzpu192649490

13. Kovalenko N.M., Shaydayuk E.L., Gultyaeva E.I. Characterization of commercial common wheat cultivars for resistance to tan spot causative agent. Plant Biotechnology and Breeding. 2022;5(2):15-24. [in Russian] DOI: 10.30901/2658-6266-2022-2-o3

14. Kremneva O.Yu., Mironenko N.V., Volkova G.V., Baranova O.A., Kim Yu.S., Kovalenko N.M. Resistance of winter wheat varieties to tan spot in the North Caucasus region of Russia. Saudi Journal of Biological Sciences. 2021;28(3):1787-1794. DOI: 10.1016/j.sjbs.2020.12.021

15. Markelova T.S., Ivanova O.V. Screening of world wheat genofond for resistance to yellow blotch under the Volga region conditions. Agricultural Biology. 2012;47(3):118-121. [in Russian]

16. Mikhailova L.A., Kovalenko N.M. Characterization of bread and durum wheat resistance to the Pyrenophora tritici-repentis pathogen (Kharakteristika ustoychivosti myagkoy i tverdoy pshenitsy k vozbuditelyu zheltoy pyatnistosti Pyrenophora tritici-repentis). Plant Protection News. 2009;(1):10-15. [in Russian]

17. Mikhailova L.A., Mironenko N.V., Kovalenko N.M. Tan leaf spot of wheat: guidelines for studying the tan spot pathogen of Pyrenophora tritici-repentis and cultivar resistance (Zheltaya pyatnistost pshenitsy: metodicheskiye ukazaniya po izucheniyu vozbuditelya zheltoy pyatnistosti Pyrenophora tritici-repentis i ustoychivosti sortov). St. Petersburg: VIZR; 2012. [in Russian]

18. Mironenko N.V., Baranova O.A., Kovalenko N.M., Afanasenko O.S., Mikhailova L.A. Selective influence of wheat cultivars with Tsn1 gene on the formation of tan spot causative agent Pyrenophora tritici-repentis population. Plant Protection News. 2017;3(93):23-27. [in Russian]

19. Mironenko N.V., Kovalenko N.M., Baranova O.A., Mitrofanova O.P. Resistance of old winter bread wheat landraces to tan spot Proceedings on Applied Botany, Genetics and Breeding. 2023;184(4):205-214. [in Russian] DOI: 10.30901/2227-8834-2023-4-205-214

20. Moreno M.V., Stenglein S., Perelló A.E. Distribution of races and Tox genes in Pyrenophora tritici-repentis isolates from wheat in Argentina. Tropical Plant Pathology. 2015;40(2):141-146. DOI: 10.1007%2Fs40858-015-0011-2

21. Murray M.G., Thompson W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research. 1980;8(19):4321-4325. DOI: 10.1093/nar/8.19.4321

22. Rees R.G., Platz G.J., Mayer R.J. Susceptibility of Australian wheats to Pyrenophora tritici-repentis. Australian Journal of Agricultural Research. 1987;39:141-151.

23. See P.T., Marathamuthu K.A., Iagallo E.M., Oliver R.P., Moffat C.S. Evaluating the importance of the tan spot ToxA–Tsn1 interaction in Australian wheat varieties. Plant Pathology. 2018;67(5):1066-1075. DOI: 10.1111/ppa.12835

24. Singh P.K., Singh R.P., Duveiller E., Mergoum M., Adhikari T.B., Elias E.M. Genetics of wheat–Pyrenophora tritici-repentis interactions. Euphytica. 2010;171:1-13. DOI: 10.1007/s10681-009-0074-6

25. Strelkov S.E., Lamari L. Host–parasite interactions in tan spot [Pyrenophora tritici-repentis] of wheat. Canadian Journal of Plant Pathology. 2003;25(4):339-349. DOI: 10.1080/07060660309507089

26. Tan K.C., Oliver R.P., Solomon P.S., Moffat C.S. Proteinaceous necrotrophic effectors in fungal virulence. Functional Plant Biology. 2010;37(10):907-912. DOI: 10.1071/FP10067

27. Zaitsev G.N. Mathematical statistics in experimental botany (Matematicheskaya statistika v eksperimentalnoy botanike). Moscow: Nauka; 1984. [in Russian]


Review

For citations:


Mironenko N.V., Kovalenko N.M., Baranova O.A., Khakimova A.G., Mitrofanova O.P. Seedling resistance of winter and spring bread wheat cultivars to Pyrenophora tritici-repentis. Proceedings on applied botany, genetics and breeding. 2024;185(2):95-105. (In Russ.) https://doi.org/10.30901/2227-8834-2024-2-95-105

Views: 298


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)