Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Responses of grapevine genotypes to abiotic stress

https://doi.org/10.30901/2227-8834-2024-2-69-81

Abstract

   Background. Salt stress reduces water supply and causes ionic imbalance in the plant, eventually leading to a decrease in plant growth, functional activity, and productivity. Variable salinity levels in the field make it difficult to select salt-tolerant cultivars, so a need for other testing methods arises.

   Materials and methods. The plant material consisted of two own-rooted Vitis vinifera (L.) genotypes: cv. ‘Asma’, and hybrid M. No. 8-08-8-4 (‘Kok Pandas’ × ‘Zeibel 6357’). Salt stress was simulated by treating with NaCl at 0, 50, 80, 100, and 120 mM concentrations. Water status was measured by the leaf water potential (Ψ) using a pressure chamber. Changes in the leaf area
and total root length were assessed in vitro.

   Results. Salt stress affected growth characteristics and yield structure of both own-rooted vines, but hybrid M. No. 8-08-8-4 was more sensitive. The hybrid showed greater yield reduction (38.6 %) than cv. ‘Asma’ (28.4 %), while the mass concentration of sugars was higher in ‘Asma’. The greatest differences in the predawn leaf water potential were observed for ‘Asma’ and M. No. 8-08-8-4 on the 45th day of irrigation with water containing different NaCl concentrations. The root length of the more salt-tolerant cultivar reduced in vitro to a greater extent.

   Conclusion. The functional abilities of a cultivar depend on the level of salinization and the genotype. Cv. ‘Asma’ demonstrated higher salt tolerance compared to hybrid M. No. 8-08-8-4. Leaf water potentials characterizing the water status of plants were measured. The responses to salinization were the same in the vines grown in vivo and in vitro, so it is possible to perform testing for salt tolerance in vitro.

About the Authors

N. G. Nilov
All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences
Russian Federation

Nikolay G. Nilov, Cand. Sci. (Agriculture), previously employed as: Leading Researcher

298600; 31 Kirova St.; Republic of Crimea; Yalta



I. I. Ryff
All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences
Russian Federation

Irina I. Ryff, Cand. Sci. (Biology), Leading Researcher, Head of a Laboratory

298600; 31 Kirova St.; Republic of Crimea; Yalta



S. P. Berezovskaya
All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences
Russian Federation

Svetlana P. Berezovskaya, Cand. Sci. (Agriculture), Senior Researcher

298600; 31 Kirova St.; Republic of Crimea; Yalta



V. Yu. Stamatidi
All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences
Russian Federation

Vladimir Yu. Stamatidi, Associate Researcher

298600; 31 Kirova St.; Republic of Crimea; Yalta



M. S. Popova
All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences
Russian Federation

Marina S. Popova, Associate Researcher

298600; 31 Kirova St.; Republic of Crimea; Yalta



V. A. Volynkin
All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences
Russian Federation

Vladimir A. Volynkin, Dr. Sci. (Agriculture), Professor, Chief Researcher

298600; 31 Kirova St.; Republic of Crimea; Yalta



V. V. Llikhovskoi
All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences
Russian Federation

Vladimir V. Likhovskoi, Dr. Sci. (Agriculture), Director

298600; 31 Kirova St.; Republic of Crimea; Yalta



References

1. Améglio T., Archer P., Cohen M., Valancogne C., Daudet F.A., Dayan S. et al. Significance and limits in the use of predawn leaf water potential for tree irrigation. Plant and Soil. 1999;207:155-167.

2. Bayuelo-Jiménez J.S., Jasso-Plata N., Ochoa I. Growth and physiological responses of Phaseolus species to salinity stress. International Journal of Agronomy. 2012;2012:527673. DOI: 10.1155/2012/527673

3. Becker H. Pflanzenzüchtung. Stuttgart: Verlag Eugen Ulmer; 2019. [in German]

4. Bhagwat S.R., Dhole A.M., Khillari J.M., Kalbhor J.N., Gavali A.H., Shelake I.T. et al. Performance of grafted vines on sodic soils under different agro-climatic condition of Maharashtra. Journal of Soil Salinity and Water Quality. 2021;13(2):83-90.

5. Charbaji T., Ayyoubi Z. Differential growth of some grapevine varieties in Syria in response to salt in vitro. In Vitro Cellular and Developmental Biology – Plant. 2004;40(2):221-224. DOI: 10.1079/IVP2003495

6. Dag A., Ben-Gal A., Goldberger S., Yermiyahu U., Zipori I., David I. et al. Sodium and chloride distribution in grape-vines as a function of rootstock and irrigation water salinity. American Journal of Enology and Viticulture. 2015;66(1):80-84. DOI: 10.5344/ajev.2014.14019

7. Deluc L.G., Decendit A., Papastamoulis Y., Merrilon J.M., Cushman J.S., Cramer G.R. Water deficit increases stilbene metabolism in Cabernet Sauvignon berries. Journal of Agricultural and Food Chemistry. 2011;59(1):289-297. DOI: 10.1021/jf1024888

8. Fisarakis I., Chartzoulakis K., Stavrakas D. Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management. 2001;51(1):13-27. DOI: 10.1016/S0378-3774(01)00115-9

9. Flowers T.J. Improving crop salt tolerance. Journal of Experimental Botany. 2004;55(396):307-319. DOI: 10.1093/jxb/erh003

10. Fozouni M., Abbaspour N., Doulati Baneh H. Leaf water potential, photosynthetic pigments and compatible solutes alterations in four grape cultivars under salinity. VITIS – Journal of Grapevine Research. 2012;51(4):147-152. DOI: 10.5073/vitis.2012.51.147-152

11. Gambetta G.A., Herrera J.C., Dayer S., Feng Q., Hochberg U., Castellarin S.D. The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance. Journal of Experimental Botany. 2020;71(16):4658-4676. DOI: 10.1093/jxb/eraa245

12. Lupo Y., Schlisser A., Dong S., Rachmilevitch S., Fait A., Lazarovitch N. Root structure and function of grapevine rootstocks (Vitis) in response io salinity. Research Square. [preprint] 2021. DOI: 10.21203/rs.3.rs-805129/v1

13. Mamedova K.K., Aliyeva Z.M. Evaluation of the resistance of grape varieties to salinization in the conditions of soil culture. Proceedings of Gorsky State Agrarian University. 2023;60(1):90-100. [in Russian] DOI: 10.54258/20701047_2023_60_1_90

14. Marín D., Armengol J., Carbonell-Bejerano P., Escalona J.M., Gramaje D., Hernández-Montes E. et al. Challenges of viticulture adaptation to global change: tackling the issue from the rotos. Australian Journal of Grape and Wine Research. 2021;27(1):8-25. DOI: 10.1111/ajgw.12463

15. Netzer Y., Shenker M., Schwartz A. Effects of irrigation using treated wastewater on table grape vineyards: Dynamics of sodium accumulation in soil and plant. Irrigation Science. 2014;32(4):283-294. DOI: 10.1007/s00271-014-0430-8

16. Ryff I.I., Nilov N.G. An in-vitro method to test multiple heat and drought resistance. Magarach. Viticulture and Winemaking. 2005;(4):9-10. [in Russian]

17. Safonova I.V, Aniskov N.I. The effectiveness of using some criteria for determining adaptability on the example of winter rye cultivars. Proceedings on Applied Botany, Genetics and Breeding. 2023;184(2):66-75. [in Russian] DOI: 10.30901/2227-8834-2023-2-66-75

18. Sinclair C., Hoffman A.A. Monitoring salt stress in grapevine: are measures of plant trait variability useful? Journal of Applied Ecology. 2003;40(5):928-937. DOI: 10.1046/j.1365-2664.2003.00843.x

19. Sivritepe N., Eriş A. Determination of salt tolerance in some grapevine cultivars (Vitis vinifera L.) under in vitro conditions. Turkish Journal of Biology. 1999;23(4):473-485.

20. Troncoso A., Matte C., Cantos M., Lavee S. Evaluation of salt to le rance of in vitro-grown grapevine rootstock varieties. VITIS – Journal of Grapevine Research. 1999;38(2):55-60.

21. Volynkin V., Likhovskoi V., Levchenko S., Vasylyk I., Ryff I., Berezovskaya S. et al. Modern trends of breeding cultivars for recreational areas of viticulture. Acta Horticulturae. 2021;1307:13-20. DOI: 10.17660/ActaHortic.2021.1307.3

22. Voronin P.Y., Myasoedov N.A., Khalilova L.A., Balnokin Y.V. Water potential of the apoplast of substomatal cavity of the Suaeda altissima (L.) Pall. leaf under salt stress. Russian Journal of Plant Physiology. 2021;68(3):519-525. DOI: 10.1134/S1021443721030171

23. Walker R.R., Blackmore D.H., Clingeleffer P.R. Impact of rootstock on yield and ion concentrations in petioles, juice and wine of Shiraz and Chardonnay in different viticultural environments with different irrigation water salinity. Australian Journal of Grape and Wine Research. 2010;16(1):243-257. DOI: 10.1111/j.1755-0238.2009.00081.x

24. Walker R.R., Blackmore D.H., Clingeleffer P.R., Correll R.L. Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana).: 1. Yield and vigour inter-relationships. Australian Journal of Grape and Wine Research. 2002;8(1):3-14. DOI: 10.1111/j.1755-0238.2002.tb00206.x

25. Walker R.R., Blackmore D.H., Clingeleffer P.R., Emanuelli D. Rootstock type determines tolerance of Chardonnay and Shiraz to long-term saline irrigation. Australian Journal of Grape and Wine Research. 2014;20(3):496-506. DOI: 10.1111/ajgw.12094

26. Walker R.R., Torokfalvy E., Scott N.S., Kriedemann P.E. An analysis of photosynthetic response to salt treatment in Vitis vinifera. Australian Journal of Plant Physiology. 1981;8(3):359-374. DOI: 10.1071/PP9810359


Review

For citations:


Nilov N.G., Ryff I.I., Berezovskaya S.P., Stamatidi V.Yu., Popova M.S., Volynkin V.A., Llikhovskoi V.V. Responses of grapevine genotypes to abiotic stress. Proceedings on applied botany, genetics and breeding. 2024;185(2):69-81. https://doi.org/10.30901/2227-8834-2024-2-69-81

Views: 334


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)