Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Allelic differences in the key genes of betalain biosynthesis in table beet accessions with contrasting root color from the VIR collection

https://doi.org/10.30901/2227-8834-2024-1-139-151

Abstract

Background. Table beet (Beta vulgaris L.) contains a great amount of naturally red-colored betanins. A number of enterprises are forced to import foreign dyes because the reserves of domestic plant raw materials are insufficient. With this in view, the development of cultivars with high betalain pigment content is now required.

Materials and methods. Allelic differences were screened in the key genes of the betalain biosynthesis pathway among table beet accessions with various root color from the VIR collection using the Sanger DNA sequencing method.

Results and discussion. For the first time we identified a nonsense mutation in the CYP76AD1 gene in cv. ‘Serdolik’ with yellow flesh; it led to the truncation of the functional P450 domain. We suggested that the detected polymorphism correlated with phenotypic switching because the well-known role of CYP76AD1 was essential for the red betalain accumulation. Moreover, a number of missense mutations in cv. ‘Avalanche’ in the first exon of the BvDODA1 gene were found. These mutations were probably associated with the expression of the uncolored phenotype. An in silico analysis revealed highly homologous copies of CYP76AD5, located tandemly on chromosome 9. Attention should be paid to these copies, together with the CYP76AD6 gene, as they seem the most preferable targets for a knockout to increase the red pigment content.

Conclusion. It is possible to identify the best table beet accessions for further genome editing among a previously selected high-betanin group. In addition, this study revealed the allelic differences in the key genes of the betalain biosynthesis pathway. These results will be useful for the development of DNA molecular markers to facilitate the selection of table beet forms with required properties.

About the Authors

A. S. Mikhailova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Aleksandra S. Mikhailova, Associate Researcher, 

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



D. V. Sokolova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Diana V. Sokolova, Cand. Sci. (Biology), Senior Researcher,

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



N. A. Shvachko
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Natalia A. Shvachko, Cand. Sci. (Biology), Leading Researcher, 

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



V. S. Popov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Vitaliy S. Popov, Cand. Sci. (Engineering), Senior Researcher, 

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



E. K. Khlestkina
N.I. Vavilov All-Russian Institute of Plant Genetic Resources; Sirius University of Science and Technology, Research Center of Genetics and Life Sciences
Russian Federation

Elena K. Khlestkina, Dr. Sci. (Biology), Professor of the RAS, Director, 42, 44 Bolshaya Morskaya Street, St. Petersburg 190000;

Plant Biology and Biotechnology Research Manager, 1 Olimpiysky Ave., Sirius Settlem., Sirius Federal Territory, Krasnodar Territory 354340



References

1. Bastos E.L., Schliemann W. Betalains as antioxidants. In: H.M. Ekiert, K.G. Ramawat, J. Arora (eds). Plant Antioxidants and Health. Reference Series in Phytochemistry. Cham: Springer; 2022. p.51-93. DOI: 10.1007/978-3-030-78160-6_9

2. Brockington S.F., Yang Y., Gandia-Herrero F., Covshoff S., Hibberd J.M., Sage R.F. et al. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytologist. 2015;207(4):1170-1180. DOI: 10.1111/nph.13441

3. GenomeNet. MOTIF Search: [website]. Available from: https://www.genome.jp/tools/motif/ [accessed Oct. 19, 2023].

4. Goldman I.L., Austin D. Linkage among the R, Y and BI loci in table beet. Theoretical and Applied Genetics. 2000;100(3-4):337-343. DOI: 10.1007/s001220050044

5. Gopalan M., Jadhav A.S. Protective effect beetroot Beta vulgaris extract against H2 O2 Induced Oxidative stress in U87MG glioma cells. South Asian Journal of Experimental Biology. 2021;11(3):266-274. DOI: 10.38150/sajeb.11(3).p.266-274

6. Grützner R., Schubert R., Horn C., Yang C., Vogt T., Marillonnet S. Engineering betalain biosynthesis in tomato for high level betanin production in fruits. Frontiers in Plant Science. 2021;12:682443. DOI: 10.3389/fpls.2021.682443

7. Hatlestad G.J., Akhavan N.A., Sunnadeniya R.M., Elam L., Cargile S., Hembd A. et al. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway. Nature Genetics. 2015;47(1):92-96. DOI: 10.1038/ng.3163

8. Hatlestad G.J., Sunnadeniya R.M., Akhavan N.A., Gonzalez A., Goldman I.L., McGrath J.M. et al. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nature Genetics. 2012;44(7):816-820. DOI: 10.1038/ng.2297

9. Integrated DNA Technologies: [website]. Available from: https://eu.idtdna.com/pages/tools/oligoanalyzer?returnurl=%2Fcalc%2Fanalyzer [accessed Oct. 19, 2023].

10. Kajanus B. Über die Farbenavriation der Beta-Rüben. Zeitschrift für Pflanzenzüchtung. 1917;5(4): 357-372. [in German]

11. Keller W. Inheritance of some major color types in beets. Journal of Agricultural Research. 1936;52(1):27-35.

12. Khan M.I., Giridhar P. Plant betalains: Chemistry and biochemistry. Phytochemistry. 2015;117:267-295. DOI: 10.1016/j.phytochem.2015.06.008

13. MEGA Software. Molecular Evolutionary Genetics Analysis: [website]. Available from: https://www.megasoftware.net/ [accessed Oct. 19, 2023].

14. MultAlin. Multiple sequence alignment with hierarchical clustering: [website]. Available from: http://multalin.toulouse.inra.fr/multalin/ [accessed Oct. 19, 2023].

15. NCBI. National Center for Biotechnology Information: [website]. Available from: https://www.ncbi.nlm.nih.gov [accessed Oct. 19, 2023].

16. NCBI. National Center for Biotechnology Information. Open Reading Frame Finder: [website]. Available from: https://www.ncbi.nlm.nih.gov/orffinder/ [accessed Oct. 19, 2023].

17. Ninfali P., Antonini E., Frati A., Scarpa E.S. C-glycosyl flavonoids from Beta vulgaris Cicla and betalains from Beta vulgaris rubra: antioxidant, anticancer and antiinflammatory activities – A review. Phytotherapy Research. 2017;31(6):871-884. DOI: 10.1002/ptr.5819

18. Oda M., Furukawa K., Ogata K., Sarai A., Ishii S., Nishimura Y. et al. Identification of indispensable residues for specific DNA-binding in the imperfect tandem repeats of c-Myb R2R3. Protein Engineering, Design and Selection. 1997;10(12):1407-1414. DOI: 10.1093/protein/10.12.1407

19. Pfam. The Protein Family Database: [website]. Available from: http://pfam.xfam.org/ [accessed Oct. 19, 2023].

20. Phytozome 13. The Plant Genomics Resource: [website]. Available from: https://phytozome-next.jgi.doe.gov/info/Bvulgaris_EL10_1_0 [accessed Oct. 19, 2023].

21. Polturak G., Breitel D., Grossman N., Sarrion-Perdigones A., Weithorn E., Pliner M. et al. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytologist. 2015;210(1):269-283. DOI: 10.1111/nph.13796

22. Polturak G., Grossman N., Vela-Corcia D., Dong Y., Nudel A., Pliner M. et al. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(34):9062-9067. DOI: 10.1073/pnas.1707176114

23. Saikumar P., Murali R., Reddy E.P. Role of tryptophan repeats and flanking amino acids in Myb-DNA interactions. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(21):8452-8456. DOI: 10.1073/pnas.87.21.8452

24. SnapGene. SnapGene Viewer: [website]. Available from: https://www.snapgene.com/snapgene-viewer [accessed Oct. 19, 2023].

25. Sokolova D.V. Genetic diversity of the table beet (Beta L.) collection at VIR as a potential source for breeding (a review). Proceedings on Applied Botany, Genetics and Breeding. 2022;183(4):239-50. [in Russian]. DOI: 10.30901/2227-8834-2022-4-239-250

26. Sokolova D.V., Shvachko N.A., Mikhailova A.S., Popov V.S. Betalain content and morphological characteristics of table beet accessions: their interplay with abiotic factors. Agronomy. 2022;12(5):1033. DOI: 10.3390/agronomy12051033

27. Sokolova D.V., Solovieva A.E. Promising initial material for breeding of beet varieties with a high content of betanin. Agrarian Russia. 2019;(8):26-32. [in Russian]. DOI: 10.30906/1999-5636-2019-8-26-32

28. Stintzing F.C., Carle R. Betalains – emerging prospects for food scientists. Trends in Food Science and Technology. 2007;18(10):514-525. DOI: 10.1016/j.tifs.2007.04.012

29. Strack D., Vogt T., Schliemann W. Recent advances in betalain research. Phytochemistry. 2003;62(3):247-269. DOI: 10.1016/s0031-9422(02)00564-2

30. Sunnadeniya R., Bean A., Brown M., Akhavan N., Hatlestad G., Gonzalez A. et al. Tyrosine hydroxylation in betalain pigment biosynthesis is performed by cytochrome P450 enzymes in beets (Beta vulgaris). PLoS One. 2016;11(2):e0149417. DOI: 10.1371/journal.pone.0149417

31. SWISS-MODEL Interactive Workspace: [website]. Available from: https://swissmodel.expasy.org/interactive [accessed Oct. 19, 2023].

32. SWISS-MODEL Template Library (SMTL): [website]. Available from: https://swissmodel.expasy.org/templates/6kks.1 [accessed Oct. 19, 2023].

33. Tesoriere L., Allegra M., Butera D., Livrea M.A. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: potential health effects of betalains in humans. The American Journal of Clinical Nutrition. 2004;80(4):941-945. DOI: 10.1093/ajcn/80.4.941

34. Unipro UGENE. Unipro UGENE 49.1: [сайт]. URL: https://ugene.net/ru/ [дата обращения: 19.10.2023].

35. UniProt. Align: [website]. Available from: https://www.uniprot.org/align [accessed Oct. 19, 2023].

36. UVA FASTA Server. Local DNA alignments (lalign): [website]. Available from: https://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi?rm=lalign&pgm=lal [accessed Oct. 19, 2023].

37. Wang B., Luo Q., Li Y., Yin L., Zhou N., Li X. et al. Structural insights into target DNA recognition by R2R3-MYB transcription factors. Nucleic Acids Research. 2019;48(1):460-471. DOI: 10.1093/nar/gkz1081

38. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research. 2018;46(1):296-303. DOI: 10.1093/nar/gky427

39. Watson J.F., Goldman I.L. Inheritance of a gene conditioning blotchy root color in table beet (Beta vulgaris L.). Journal of Heredity. 1997;88(6):540-543. DOI: 10.1093/oxfordjournals.jhered.a023154

40. Yudina R.S., Gordeeva E.I., Shoeva O.Yu., Tikhonova M.A., Khlestkina E.K. Anthocyanins as functional food components. Vavilov Journal of Genetics and Breeding. 2021;25(2):178-189. [in Russian]). DOI: 10.18699/VJ21.022


Supplementary files

1. Supplement 1
Subject Table 1. Allele-specific primers for resequencing alleles of betalain biosynthesis genes in samples contrasting in root color.
Type Other
Download (135KB)    
Indexing metadata ▾
2. Supplement 2
Subject Table 2. Allelic differences in structural and regulatory biosynthes betalain genes of table beet.
Type Other
Download (175KB)    
Indexing metadata ▾
3. Supplement 3
Subject Figure 1. Multiple alignment of nucleotide sequences of the promoter region and the first exon of the CYP76AD1 gene.
Type Other
View (4MB)    
Indexing metadata ▾
4. Supplement 4
Subject Figure 2. Multiple alignment of nucleotide sequences of the promoter region and the first exon (highlighted in green) of the CYP76AD5.1 gene.
Type Other
View (4MB)    
Indexing metadata ▾
5. Supplement 5
Subject Figure 3. Multiple alignment of nucleotide sequences of the promoter region and the first exon (highlighted with a green frame) of the CYP76AD5.2 gene.
Type Other
View (4MB)    
Indexing metadata ▾
6. Supplement 6
Subject Figure 4. Multiple alignment of nucleotide sequences of the promoter region and the first exon (highlighted with a green frame) of the CYP76AD5.3 gene.
Type Other
View (3MB)    
Indexing metadata ▾
7. Supplement 7
Subject Figure 5. Multiple alignment of nucleotide sequences of the promoter region and the first exon (highlighted with a green frame) of the CYP76AD6 gene.
Type Other
View (1MB)    
Indexing metadata ▾
8. Supplement 8
Subject Figure 6. Multiple alignment of nucleotide sequences of the promoter region and the first exon of the BvDODAl gene.
Type Other
View (5MB)    
Indexing metadata ▾
9. Supplement 9
Subject Figure 7. Multiple alignment of nucleotide sequences of the coding region of the BvMYBl gene.
Type Other
View (1MB)    
Indexing metadata ▾

Review

For citations:


Mikhailova A.S., Sokolova D.V., Shvachko N.A., Popov V.S., Khlestkina E.K. Allelic differences in the key genes of betalain biosynthesis in table beet accessions with contrasting root color from the VIR collection. Proceedings on applied botany, genetics and breeding. 2024;185(1):139-151. (In Russ.) https://doi.org/10.30901/2227-8834-2024-1-139-151

Views: 360


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)