Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Microclonal propagation of elite industrial grape cultivars (Vitis vinifera L.)

https://doi.org/10.30901/2227-8834-2023-4-222-231

Abstract

Background. The grape is one of the most economically significant berry crops: its cultivation area covers over 6.7 million hectares. Due to certain biological characteristics of grapes, such as a long juvenile period (5–8 years), a high degree of genomic heterozygosity, and the frequently encountered phenomenon of inbred depression, when homozygotization during hybridization leads to a loss of viability and production characteristics of the cultivar, vegetative propagation becomes the basis for grape reproduction and industrial cultivation. Microclonal propagation is the foundation for rejuvenation and revitalization of modern vineyards. Developing approaches for microclonal propagation of elite industrial grape cultivars remains a relevant task for the modern wine industry.

Materials and methods. The industrial grape cultivars ‘Malbec’, ‘Merlot’, ‘Chardonnay’, and ‘Riesling’ from the field collection of the All-Russian National Research institute of Viticulture and Winemaking “Magarach” were used for the work.

Results. This research succeeded in devising a universal, one-stage protocol for the microclonal propagation of elite industrial grape cultivars, such as ‘Merlot’, ‘Chardonnay’, ‘Malbec’, and ‘Riesling’, making the production of plants ready for adaptation into the soil (ex vitro) within 1 months after rooting.

Conclusion. The use of the microclonal propagation protocol developed in this study for industrial grape cultivars will reduce labor costs and shorten the time required to obtain a plant ready for adaptation to open ground two to three times.

About the Author

A. Yu. Fizikova
Sirius University of Science and Technology, Research Center of Genetics and Life Sciences
Russian Federation

Anastasia Yu. Fizikova, Cand. Sci. (Biology), Researcher 

1 Olimpiysky Ave., Sirius Settlem., Sirius Federal Territory, Sochi, Krasnodar Territory 354340 



References

1. Aazami M.A. Effect of some growth regulators on “in vitro” culture of two Vitis vinifera L. cultivars. Romanian Biotechnological Letters. 2010;15:5229-5232.

2. Al-Aizari A.A., Al-Obeed R.S., Mohamed M.A.H. Improving micropropagation of some grape cultivars via boron, calcium and phosphate. Electronic Journal of Biotechnology. 2020;48:95-100. DOI: 10.1016/j.ejbt.2020.10.001

3. Anupa N.T., Sahijram L., Samarth R., Rao B.M. In vitro shoot induction of three grape (Vitis vinifera L.) varieties using nodal and axillary explants. The BioScan. 2016;11(1):201-204.

4. Cohen P., Bacilieri R., Ramos-Madrigal J., Privman E., Boaretto E., Weber A. et al. Ancient DNA from a lost Negev Highlands desert grape reveals a Late Antiquity wine lineage. Proceedings of the National Academy of Sciences of the United States of America. 2023:120(17): e2213563120. DOI: 10.1073/pnas.2213563120

5. Dalla Costa L., Malnoy M., Lecourieux D. Deluc L., OuakedLecourieux F., Thomas M.R. et al. The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS). OENO One. 2019;53(2):189-212. DOI: 10.20870/oeno-one.2019.53.2.2405

6. FAOSTAT. Food and Agriculture Organization of the United Nations: [website]. Available from: https://www.fao.org/faostat/en/#data/QCL [accessed Oct. 01, 2023].

7. Heloir M.C., Fournioux J.C., Oziol L., Bessis R. An improved procedure for the propagation in vitro of grapevine (Vitis vinifera cv. Pinot noir) using axillary-bud microcuttings. Plant Cell, Tissue and Organ Culture. 1997;49:223-225. DOI: 10.1023/A:1005867908942

8. JoseVouillamoz.com: [website]. Available from: http://www.josevouillamoz.com [accessed Sept. 19, 2023].

9. Laimer M. Transgenic grapevines. Transgenic Plant Journal. 2007;1(1):219-227.

10. Malnoy M., Viola R., Jung M.H., Koo O.J., Kim S., Kim J.S. et al. DNA-Free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science. 2016;7:1904. DOI: 10.3389/fpls.2016.01904

11. Massonnet M., Cochetel N., Minio A., Vondras A.M., Lin J., Muyle A. et al. The genetic basis of sex determination in grapes. Nature Communications. 2020;11(1):2902. DOI: 10.1038/s41467-020-16700-z

12. McGovern P.E. Ancient Wine: The Search for the Origins of Viniculture. Princeton, NJ: Princeton University Press; 2003. DOI: 10.1515/9781400849536.1

13. Migicovsky Z., Sawler J., Gardner K.M., Aradhya M.K., Prins B.H., Schwaninger H.R. et al. Patterns of genomic and phenomic diversity in wine and table grapes. Horticulture Research. 2017;4:17035. DOI: 10.1038/hortres.2017.35

14. Munir I., Yen H.W., Baruth T., Tarkowski R., Azziz R., Magoffin D.A. et al. Resistin stimulation of 17alpha-hydroxylase activity in ovarian theca cells in vitro: relevance to polycystic ovary syndrome. The Journal of Clinical Endocrinology and Metabolism. 2005;90(8):4852-4857. DOI: 10.1210/jc.2004-2152

15. Myles S., Boyko A.R., Owens C.L., Brown P.J., Grassi F., Aradhya M.K. et al. Genetic structure and domestication history of the grape. Proceedings of the National Academy of Sciences of the United States of America. 2011:108(9):3530-3535. DOI: 10.1073/pnas.1009363108

16. Ng SY.C., Thottappilly G., Rossel H.W. Tissue Culture in disease elimination and micropropagation. In: G. Thottappilly, L.M. Monti, D. Mohan-Raj, A.W. Moore (eds). Biotechnology: Enhancing Research on Tropical Crops in Africa. Ibadan: CTA/IITA; 1992. p.171-182.

17. Nishitani C., Hirai N., Komori S., Wada M., Okada K., Osakabe K. et al. Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports. 2016:6(1):31481. DOI: 10.1038/srep31481

18. Perl A., Colova-Tsolova V., Eshdat Y. Agrobacterium-mediated transformation of grape embryogenic calli. In: I.S. Curtis (ed.). Transgenic Crops of the World. Dordrecht: Springer; 2004. p.229-242. DOI: 10.1007/978-1-4020-2333-0_17

19. Pierozzi N., Moura M. Karyotype analysis in grapevines. Revista Brasileira de Fruticultura. 2016:38(1):213-221. DOI: 10.1590/0100-2945-280/14

20. Rathore J.S., Rathore V., Shekhawat N.S., Singh R.P., Liler G., Phulwaria M. et al. Micropropagation of woody plants. In: P.S. Srivastava, A. Narula, S. Srivastava (eds). Plant Biotechnology and Molecular Markers. Dordrecht: Springer; 2004. p.195-205. DOI: 10.1007/1-4020-3213-7_13

21. Ren C., Liu Y., Guo Y., Duan W., Fan P., Li S. et al. Optimizing the CRISPR/Cas9 system for genome editing in grape by using grape promoters. Horticulture Research. 2021:8(1):52. DOI: 10.1038/s41438-021-00489-z

22. This P., Lacombe T., Thomas M.R. Historical origins and genetic diversity of wine grapes. Trends in Genetics. 2006;22(9):511-519. DOI: 10.1016/j.tig.2006.07.008

23. Thomas P. Microcutting leaf area, weight and position on the stock shoot influence root vigour, shoot growth and incidence of shoot tip necrosis in grape plantlets in vitro. Plant Cell, Tissue and Organ Culture. 2000:61(3):189-198. DOI: 10.1023/A:1006425807853

24. Töpfer R., Trapp O. A cool climate perspective on grapevine breeding: climate change and sustainability are driving forces for changing varieties in a traditional market. Theoretical and Applied Genetics. 2022:135(2):3947-3960. DOI: 10.1007/s00122-022-04077-0

25. Torregrosa L., Vialet S., Adivèze A., Iocco-Corena P., Thomas M.R. Grapevine (Vitis vinifera L.). Methods in Molecular Biology. 2015;1224:177-194. DOI: 10.1007/978-1-4939-1658-0_15

26. Usenko L.N., Udalova Z.V. Analysis of the state of winemaking subcomplex of Russia. Accounting and Statistics. 2018:1(49):22-31. [in Russian]


Review

For citations:


Fizikova A.Yu. Microclonal propagation of elite industrial grape cultivars (Vitis vinifera L.). Proceedings on applied botany, genetics and breeding. 2023;184(4):222-231. (In Russ.) https://doi.org/10.30901/2227-8834-2023-4-222-231

Views: 590


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)