Effects of irrigation frequency on growth and yields of Taraxacum kok-saghyz Rodin
https://doi.org/10.30901/2227-8834-2023-4-53-63
Abstract
Taraxacum kok-saghyz (TKS) is one of the most promising rubber plants in the world. The question of how irrigation affects its yields and biochemical composition has not yet been studied well. The effects of irrigation frequency on the growth and yield of Taraxacum kok-saghyz were analyzed. According to the obtained results, it was established that an increase in irrigation frequency (extension of the watering interval) gradually decreased TKS rubber and total sugar yields. With the soil water content increasing from 22.8 to 38.9%, TKS rubber and sugar yields were changing in line with a cubic polynomial equation. Regular watering once every 6 days maintains soil moisture at a level above 28.0%, which makes it possible to increase the yield of Taraxacum kok-saghyz while enhancing the water-use efficiency under the conditions of Northeastern China (Harbin).
About the Authors
G. ShenChina
Guang Shen, PhD, Institute of Natural Resources and Ecology
No. 103, Haping Road, Xiangfang District, Harbin, Heilongjiang Province
F. Zheng
China
Fuyun Zheng, Master, Institute of Natural Resources and Ecology
No. 103, Haping Road, Xiangfang District, Harbin, Heilongjiang Province
L. Zhou
China
Lin Zhou, Master, Associate Researcher
No. 103, Haping Road, Xiangfang District, Harbin, Heilongjiang Province
X. Zeng
China
Xiangjun Zeng, Bachelor, Department of Science and Technology
No. 204, Zhongshan Street, Nangang District, Harbin, Heilongjiang Province
N. G. Konkova
Russian Federation
Nina G. Konkova, Researcher
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000
References
1. Allen S.G., Nakayama F.S., Dierig D.A., Rasnick B.A. Plant water relations, photosynthesis, and rubber content of young guayule plants during water stress. Agronomy Journal. 1987;79(6):1030-1035. DOI: 10.2134/agronj1987.00021962007900060016x
2. Arias M., Hernández M., Ritter E. How does water supply affect Taraxacum koksaghyz Rod. rubber, inulin and biomass production? Industrial Crops and Products. 2016;91:310-314. DOI: 10.1016/j.indcrop.2016.07.024
3. Bucks D.A., Nakayama F.S., French O.F., Rasnick B.A., Alexander W.L. Irrigated guayule – Plant growth and production. Agricultural Water Management. 1985;10(1):81-93. DOI: 10.1016/0378-3774(85)90036-8
4. Bucks D.A., Nakayama F.S., French O.F., Rasnick B.A., Alexander W.L., Powers D.E. Water management and production relations of mature guayule. In: Annual Report of the U.S. Water Conservation Laboratory. Phoenix, AZ: USWCL; 1985. p.165-169. Available from: https://www.ars.usda.gov/ARSUserFiles/53442000/AnnualReports/AnnualReportArchive/USWCL_AnnualReport_1985[OCR].pdf [accessed June 15, 2022].
5. Carr M.K.V. The water relations of rubber (Hevea brasiliensis): A review. Experimental Agriculture. 2012;48(2):176-193. DOI: 10.1017/S0014479711000901
6. Cornish K. Alternative natural rubber crops: Why should we care? Technology and Innovation. 2017;18(4):244-255. DOI: 10.21300/18.4.2017.245
7. Devakumar A.S., Gawai Prakash P., Sathik M.B.M., Jacob J. Drought alters the canopy architecture and micro-climate of Hevea brasiliensis trees. Trees. 1999;13(3):161-167. DOI: 10.1007/PL00009747
8. Ehrler W.L., Bucks D.A., Nakayama F.S. Relations among relative leaf water content, growth, and rubber accumulation in guayule. Crop Science. 1985;25(5):779-782. DOI: 10.2135/cropsci1985.0011183X0025000500013x
9. Fangmeier D.D., Samani Z., Garrot Jr. D., Ray D.T. Water effects on guayule rubber production. Transactions of the American Society of Agricultural Engineers. 1985;28(6):1947-1950. DOI: 10.13031/2013.32546
10. Gomes A.R.S., Kozlowski T.T. Physiological and growth responses to flooding of seedlings of Hevea brasiliensis. Biotropica. 1988;20(4):286-293. DOI: 10.2307/2388318
11. Halford N.G., Curtis T.Y., Muttucumaru N., Postles J., Mottram D.S. Sugars in crop plants. Annals of Applied Biology. 2011;158(1):1-25. DOI: 10.1111/j.1744-7348.2010.00443.x
12. Hammond B.L., Polhamus L.G. Technical Bulletin No. 1327. Research on guayule (Parthenium argentatum): 1942- 1959. Washington, DC: USDA ARS; 1965. DOI: 10.22004/ag.econ.171251
13. Hanson A.D., Hitz W.D. Metabolic responses of mesophytes to plant water deficits. Annual Review of Plant Physiology. 1982;33(1):163-203. DOI: 10.1146/annurev.pp.33.060182.001115
14. Hsiao T.C., Acevedo E., Fereres E., Henderson D.W. Water stress, growth and osmotic adjustment. Philosophical Transactions of the Royal Society B. Biological Sciences. 1976;273(927):479-500. DOI: 10.1098/rstb.1976.0026
15. Hunsaker D.J., Elshikha D.M. Surface irrigation management for guayule rubber production in the US desert Southwest. Agricultural Water Management. 2017;185:43-57. DOI: 10.1016/j.agwat.2017.01.015
16. Iljin W.S. Drought resistance in plants and physiological processes. Annual Review of Plant Physiology. 1957;8(1):257- 274. DOI: 10.1146/annurev.pp.08.060157.001353
17. Kameli A., Löselδ D.M. Carbohydrates and water status in wheat plants under water stress. New Phytologist. 1993;125(3):609-614 DOI: 10.1111/j.1469-8137.1993.tb03910.x
18. Kirk R.E. Experimental design: procedures for the behavioral sciences. 4th ed. Newbury Park, CA: SAGE Publications, Inc.; 2013. DOI: 10.4135/9781483384733
19. Miyamoto S., Bucks D.A. Water quantity and quality requirements of guayule: Current assessment. Agricultural Water Management. 1985;10(3):205-219. DOI: 10.1016/0378-3774(85)90012-5
20. Nakayama F.S., Bucks D.A, Roth R.L., Gardner B.R. Guayule biomass production under irrigation. Bioresource Technology. 1991;35(2):173-178. DOI:10.1016/0960-8524(91)90026-G
21. Oki T., Kanae S. Global hydrological cycles and world water resources. Science. 2006;313(5790):1068-1072. DOI: 10.1126/science.1128845
22. Poorter H., Niklas K.J., Reich P.B., Oleksyn J., Poot P., Mommer L. Biomass allocation to leaves, stems and roots: metaanalyses of interspecific variation and environmental control. New Phytologist. 2012;193(1):30-50. DOI: 10.1111/j.1469-8137.2011.03952.x
23. R Core Team. The R project for statistical computing. R: a language and environment for statistical computing. Vienna; 2020. Available from: https://www.r-project.org/ [accessed May 26, 2022].
24. R Studio Team. R Studio: integrated development for R. Boston. MA: RStudio, Inc.; 2015. Available from: http://www.rstudio.com [accessed May 26, 2022].
25. Sinclair T.R., Tanner C.B., Bennett J.M. Water-use efficiency in crop production. BioScience. 1984;34(1):36-40. DOI: 10.2307/1309424
26. Taiz L., Zeiger E., Møller I.M., Murphy A. Plant physiology and development. 6th ed. Sunderland, CT: Sinauer Associates; 2015.
27. Vassiliev I.M., Vassiliev M.G. Changes in carbohydrate content of wheat plants during the process of hardening for drought resistance. Plant Physiology. 1936;11(1):115-125. DOI: 10.1104/pp.11.1.115
28. Veatch-Blohm M.E., Ray D.T., McCloskey W.B. Water-stressinduced changes in resin and rubber concentration and distribution in greenhouse-grown guayule. Agronomy. 2006;98(3):766-773. DOI: 10.2134/agronj2005.0203
29. Vörösmarty C.J., Green P., Salisbury J., Lammers R.B. Global water resources: vulnerability from climate change and population growth. Science. 2000;14;289(5477):284-288.
Review
For citations:
Shen G., Zheng F., Zhou L., Zeng X., Konkova N.G. Effects of irrigation frequency on growth and yields of Taraxacum kok-saghyz Rodin. Proceedings on applied botany, genetics and breeding. 2023;184(4):53-63. https://doi.org/10.30901/2227-8834-2023-4-53-63