Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Anatomy, ploidy level, and essential oil composition of Hyssopus officinalis ʻNikitskiy Beliyʼ in vitro and ex situ

https://doi.org/10.30901/2227-8834-2023-4-21-30

Abstract

Background. Clonal micropropagation is a biotechnological method for plant multiplication. The existing data on the structure of organs in vitro, genetic stability, and essential oil composition are limited for Hyssopus officinalis L., so this study was aimead at investigating these aspects under a short period of in vitro culturing.

Materials and methods. Plants of Hyssopus officinalis ʻNikitskiy Beliyʼ cultivated ex situ, in vitro and ex vitro were analyzed. Conventional methods were applied to study plant anatomy, ploidy level, and relative DNA content, as well as to extract and analyze essential oil. Statistical analysis was performed using the Past 4.03 software.

Results. According to the results obtained, with 6-BAP introduced into MS nutrient medium in optimal concentrations (0.3– 0.5 mg/L), the general in vitro structure of leaf blades in the developed microshoots was similar to those in ex situ plants, while the qualitative and quantitative changes observed were induced by the effect of specific culturing conditions and plant rejuvenation. The analysis of the ploidy level and relative DNA content in the nuclei isolated from the leaf tissue cells of the microshoots ex vitro after adaptation revealed no changes compared to the ex situ leaf parameters. The mass fraction of essential oil and its component composition in the mother plants and ex vitro regenerants were similar.

Conclusion. Cultivation of Hyssopus officinalis ʻNikitskiy Beliyʼ microshoots on MS nutrient medium with 6-BAP optimal concentrations promotes morphogenesis without significant deviations in the ploidy level, relative DNA content, essential oil yield, or its component composition. The developed protocol for clonal micropropagation of Hyssopus officinalis ʻNikitskiy Beliyʼ provides clones identical to the ex situ plants.

About the Authors

I. V. Bulavin
Nikita Botanical Gardens – National Scientific Center of the RAS
Russian Federation

Iliya V. Bulavin, Cand. Sci. (Biology), Senior Researcher, Head of a Laboratory

52 Nikitsky Spusk, Nikita, Yalta 298648, Republic of Crimea
 



N. N. Ivanova
Nikita Botanical Gardens – National Scientific Center of the RAS
Russian Federation

Natalia N. Ivanova, Cand. Sci. (Biology), Senior Researcher 

52 Nikitsky Spusk, Nikita, Yalta 298648, Republic of Crimea 



N. N. Miroshnichenko
Nikita Botanical Gardens – National Scientific Center of the RAS
Russian Federation

Natalia N. Miroshnichenko, Cand. Sci. (Biology), Researcher 

52 Nikitsky Spusk, Nikita, Yalta 298648, Republic of Crimea 



N. M. Saplev
Nikita Botanical Gardens – National Scientific Center of the RAS
Russian Federation

Nikita M. Saplev, Associate Researcher 

52 Nikitsky Spusk, Nikita, Yalta 298648, Republic of Crimea 



S. A. Feskov
Nikita Botanical Gardens – National Scientific Center of the RAS
Russian Federation

Sergey A. Feskov, Researcher 

52 Nikitsky Spusk, Nikita, Yalta 298648, Republic of Crimea 



References

1. Abdolinejad R., Shekafandeh A., Jowkar A., Gharaghani A., Alemzadeh A. Indirect regeneration of Ficus carica by the TCL technique and genetic fidelity evaluation of the regenerated plants using flow cytometry and ISSR. Plant Cell, Tissue and Organ Culture. 2020;143(1):131-144. DOI: 10.1007/s11240-020-01903-5

2. Adams R.P. Identification of essential oil components by gas chromatography/quadrupole mass spectrometry. 4th ed. Carol Stream, IL: Allured Publishing Corporation; 2007.

3. Ai X.,Wen Y.,Wang B. Assessment of genetic stability on in vitro propagation of Ardisia crenata var. bicolor using ISSR markers. International Journal of Plant Biology. 2023;14(1):218-227. DOI: 10.3390/ijpb14010018

4. Allahverdi-Mamaghani B., Hesamzadeh Hejazi S.M., Mirza M., Movafeghi A. Comparison of essential oils composition between in-vitro plantlets and greenhouse plants from various populations of Dracocephalum kotschyi Boiss. Journal of Medicinal Plants and By-products. 2022;11(2):219-230. DOI: 10.22092/jmpb.2021.353864.1343

5. Apóstolo N.M., Brutti C.B., Llorente B.E. Leaf anatomy of Cynara scolymus L. in successive micropropagation stages. In Vitro Cellular and Developmental Biology – Plant. 2005;41(3):307-313. DOI: 10.1079/IVP2004606

6. Bulavin I., Brailko V., Zhdanova I. In vitro rhizogenesis of the Lavandula angustifolia cultivars. BIO Web of Conferences. 2020;24:00017. DOI: 10.1051/bioconf/20202400017

7. Bulavin I.V., Ivanova N.N., Mitrofanova I.V. In vitro regeneration of Hyssopus officinalis L. and plant genetic similarity. Doklady Biological Sciences. 2021;499(1):109-112. DOI: 10.1134/S0012496621040013

8. Catalano C., Carra A., Carimi F., Motisi A., Sajeva M., Butler A. et al. Somatic embryogenesis and flow cytometric assessment of nuclear genetic stability for Sansevieria spp.: an approach for in vitro regeneration of ornamental plants. Horticulturae. 2023;9(2):138. DOI: 10.3390/horticulturae9020138

9. Çetin B. Evaluation of the genetic fidelity of in vitro raised plants of Origanum majorana L. using random amplified polymorphic DNA. Celal Bayar University Journal of Science. 2018;14(2):237-239. DOI: 10.18466/cbayarfbe.406873

10. Duta-Cornescu G., Constantin N., Pojoga D.M., Nicuta D., SimonGruita A. Somaclonal variation – Advantage or disadvantage in micropropagation of the medicinal plants. International Journal of Molecular Sciences. 2023;24(1):838. DOI: 10.3390/ijms24010838

11. Fritsche Y., Deola F., da Silva D.A., Holderbaum D.F., Guerra M.P. Cattleya tigrina (Orchidaceae) in vitro regeneration: main factors for optimal protocorm-like body induction and multiplication, plantlet regeneration, and cytogenetic stability. South African Journal of Botany. 2022a;149:96-108. DOI: 10.1016/j.sajb.2022.05.059

12. Fritsche Y., Ornellas T.S., Stefenon V.M., Guerra M.P. Ploidy mosaics: does endopolyploidy in explants affect the cytogenetic stability of orchids regenerated from PLBs? Plant Cell, Tissue and Organ Culture. 2022b;149(3):697-713. DOI: 10.1007/s11240-022-02238-z

13. Grebennikova O.A., Paliy A.Y., Khlypenko L.A., Rabotyagov V.D. Biologically active substances of Hyssopus officinalis L. Orbital. 2017;(1):21-28. [in Russian]

14. Guedes A.P., Amorim L.R., Vicente A.M.S., Ramos G., FernandesFerreira M. Essential oils from plants and in vitro shoots of Hypericum androsaemum L. Journal of Agricultural and Food Chemistry. 2003;51(5):1399-1404. DOI: 10.1021/jf020872f

15. Hammer Ø., Harper D.A.T., Ryan P.D. PAST: paleontological statistics software. Package for education and data analysis. Palaeontologia Electronica. 2001;4(1):4. Available from: http://palaeo-electronica.org/2001_1/past/past.pdf [accessed Jan. 26, 2023].

16. Kalinichenko L.V., Malankina E.L., Przhevalsky N.M., Rozhkova E.N., Gryaznov A.P. How to increase the rooting ability of hyssop (Kak povysit ukorenyayemost issopa). Potato and Vegetables. 2013;(8):18-19. [in Russian]

17. Kuźma Ł; Kalemba D., Różalski M., Różalska B., Więckowska-Szakiel M., Krajewska U. et al. Chemical composition and biological activities of essential oil from Salvia sclarea plants regenerated in vitro. Molecules. 2009;14(4):1438-1447. DOI: 10.3390/molecules14041438

18. Loureiro J., Rodriguez E., Doležel J., Santos C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of Botany. 2007;100(4):875-888. DOI: 10.1093/aob/mcm152

19. Luczkiewicz M., Jesionek A., Kokotkiewicz, A., Migas P., Mardarowicz M., Szreniawa-Sztajnert A. et al. Production of essential oils from in vitro cultures of Caryopteris species and comparison of their concentrations with in vivo plants. Acta Physiologiae Plantarum. 2015;37(3):58. DOI: 10.1007/s11738-015-1804-0

20. Manokari M., Priyadharshini S., Shekhawat M.S. Microstructural stability of micropropagated plants of Vitex negundo L. Microscopy and Microanalysis. 2021;27(3):626-634. DOI: 10.1017/S1431927621000283

21. Martins J.P.R., Rodrigues L.C.D.A., Conde L.T., Gontijo A.B.P.L., Falqueto A.R. Anatomical and physiological changes of in vitro-propagated Vriesea imperialis (Bromeliaceae) in the function of sucrose and ventilated containers. Plant Biosystems. 2020;154(1):87-99. DOI: 10.1080/11263504.2019.1635223

22. Maslova E., Gulya N., Perelugina T., Semykina V., Kalashnikova E. Introduction of Hyssopus officinalis L. into in vitro culture to optimize the conditions for obtaining callus tissues and microclonal propagation as a promising method of innovative agrobiotechnologies. BIO Web Conferences. 2021;30:05006. DOI: 10.1051/bioconf/20213005006

23. Mitrofanova I., Tsyupka V., Jain S.M. Morpho-anatomical characterization of in vitro regenerated plants. In: A.C. Rai, A. Kumar, A. Modi, M. Singh (eds). Advances in Plant Tis- sue Culture. Current Developments and Future Trends. Cambridge, MA: Academic Press; 2022. p.175-204.

24. Mitrofanova I.V., Lesnikova-Sedoshenko N.P., Chelombit S.V., Zhdanova I.V., Ivanova N.N., Mitrofanova O.V. The effect of plant growth regulators on the in vitro regeneration capacity in some horticultural crops and rare endangered plant species. Acta Horticulturae. 2022;1339:189-191. DOI: 10.17660/ActaHortic.2022.1339.24

25. Neelakandan A.K, Wang K. Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Reports. 2012;31(4):597-620. DOI: 10.1007/s00299-011-1202-z

26. Plugatar Y.V., Bulavin I.V., Ivanova N.N., Miroshnichenko N.N., Saplev N.M., Shevchuk O.M. et al. Study of the component composition of essential oil, morphology, anatomy and ploidy level of Hyssopus officinalis f. cyaneus Alef. Horticulturae. 2023;9(4),480. DOI: 10.3390/horticulturae9040480

27. Raji M.R., Farajpour M. Genetic fidelity of regenerated plants via shoot regeneration of muskmelon by inter simple sequence repeat and flow cytometry. Journal of the Saudi Society of Agricultural Sciences. 2021;20(2):88-93. DOI: 10.1016/j.jssas.2020.12.003

28. Rodrigues S.P., de Toledo Picoli E.A., de Oliveira D.C., da Silva Carneiro R.G., dos Santos Isaias R.M. The effects of in vitro culture on the leaf anatomy of Jatropha curcas L. (Euphorbiaceae). Bioscience Journal. 2014;30(6):1933-1941.

29. Rohela G.K., Jogam P., Saini P., Sandhya D., Peddaboina V., Shekhawat M.S. Assessing the genetic stability of in vitro raised plants. In: S. Gupta, P. Chaturvedi (eds). Commercial Scale Tissue Culture for Horticulture and Plantation Crops. Singapore: Springer; 2022. p.245-276. DOI: 10.1007/978-981-19-0055-6_11

30. Ryabushkina N.A. Clonality and somaclonal variations in plants. Biotechnology. Theory and practice. 2014;(2):17-27. [in Russian]. DOI: 10.11134/btp.2.2014.3

31. Shelepova O.V., Dilovarova T.A., Gulevich A.A., Olekhnovich L.S., Shirokova A.V., Ushakova I.T. et al. Chemical components and biological activities of essential oils of Mentha × piperita L. from field-grown and fieldacclimated after in vitro propagation plants. Agronomy. 2021;11(11):2314. DOI: 10.3390/agronomy11112314

32. Shevchuk O.M., Isikov V.P., Logvinenko L.A. Methodological and procedural aspects of introduction and breeding of aromatic and medicinal plants (Metodologicheskiye i metodicheskiye aspekty introduktsii i selektsii aromaticheskikh i lekarstvennykh rasteniy). Simferopol: Arial; 2022. [in Russian]

33. Shiga I., Uno Y., Kanechi M., Inagaki N. Identification of polyploidy of in vitro anther-derived shoots of Asparagus officinalis L. by flow cytometric analysis and measurement of stomatal length. Journal of the Japanese Society for Horticultural Science. 2009;78(1):103-108.

34. Shriram V., Nanekar V., Kumar V., Kavi Kishor P.B. In vitro regeneration and ploidy level analysis of Eulophia ochreata Lindl. Indian Journal of Experimental Biology. 2014;52(11):1112-1121.

35. Skaptsov M.V., Smirnov S.V., Kutsev M.G., Shmakov A.I. Problems of a standardization in plant flow cytometry. Turczaninowia. 2016;19(3):120-122. [in Russian]. DOI: 10.14258/turczaninowia.19.3.9

36. Sliwinska E., Thiem B. Genome size stability in six medicinal plant species propagated in vitro. Biologia Plantarum. 2007;51(3):556-558. DOI: 10.1007/s10535-007-0121-x

37. Thiem B., Kikowska M., Kurowska A., Kalemba D. Essential oil composition of the different parts and in vitro shoot culture of Eryngium planum L. Molecules. 2011;16(8):7115-7124. DOI: 10.3390/molecules16087115

38. Tkachev A.V. A study of volatile substances in plants (Issledovaniye letuchikh veshchestv rasteniy). Novosibirsk: Ofset; 2008. [in Russian]

39. Velikorodov А.V., Kovalev V.B., Kurbanova F.H., Shchepetova Е.V. Chemical composition of essential oil of Hyssopus officinalis L., cultivated in the Astrakhan region. Chemistry of Plant Raw Material. 2015;(3):71-76. [in Russian]. DOI: 10.14258/jcprm.201503749


Review

For citations:


Bulavin I.V., Ivanova N.N., Miroshnichenko N.N., Saplev N.M., Feskov S.A. Anatomy, ploidy level, and essential oil composition of Hyssopus officinalis ʻNikitskiy Beliyʼ in vitro and ex situ. Proceedings on applied botany, genetics and breeding. 2023;184(4):21-30. https://doi.org/10.30901/2227-8834-2023-4-21-30

Views: 596


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)