Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Expression of the transcription factor encoding gene StTCP23 in potato plants infected with the tuber spindle viroid

https://doi.org/10.30901/2227-8834-2023-3-207-213

Abstract

Background The potato spindle tuber viroid (PSTVd) is the smallest of all known potato pathogens. PSTVd is a circular, single-stranded RNA molecule that does not code for proteins. Symptoms caused by PSTVd lead to a significant reduction in tuber yield or death of the plant. PSTVd infection triggers the silencing of host-plant genes and induces disease symptoms in the plant via vd-sRNA. The StTCP23 potato gene which encodes a transcription factor is one of the targets of PSTVd. The aim of the study was to assess the effect of inoculation of potato plants of cv. ‘Colomba’ with the PSTVd viroid NicTr-3 strain on the StTCP23 expression in infected plants.

Materials and methods. Potato plants of cv. ‘Colomba’ were inoculated with leaf sap of the tomato cv. ‘Rutgers’ in which the PSTVd viroid NicTr-3 strain was propagated. RT-PCR with specific primers was used to confirm the infection of potato plants with the viroid. Diversity of RNA molecules in the PSTVd population was revealed using RT, cloning, and sequencing of the viroid. The expression of the StTCP23 gene in infected potato plants was assessed by quantitative PCR with the ef1α gene as a reference.

Results. Symptoms of infecting ‘Colomba’ plants with the PSTVd viroid strain NicTr-3 were not detected, while the presence of the viroid in potato leaves was confirmed by molecular methods. Ten mutations were found in individual variants of the PSTVd strain NicTr-3, responsible for reducing the viroid’s aggressiveness. An increase in the expression of StTCP23 was shown at 3 time points in ‘Colomba’ plants inoculated with the NicTr-3 strain compared to the control.

Conclusion. The mechanism of interaction between PSTVd and the StTCP23 gene in an infected potato plant is not universal and depends both on the potato genotype and viroid strain. Additional studies are required to prove the existence of specific interaction mechanisms between the host-plant and viroid strain genotypes.

About the Authors

N. V. Mironenko
All-Russian Research Institute of Plant Protection
Russian Federation

Nina V. Mironenko, Dr. Sci. (Biology), Leading Researcher

3 Podbelskogo Hwy., Pushkin, St. Petersburg 196608



A. S. Orina
All-Russian Research Institute of Plant Protection
Russian Federation

Aleksandra S. Orina, Cand. Sci. (Biology), Senior Researcher

3 Podbelskogo Hwy., Pushkin, St. Petersburg 196608



N. M. Lashina
All-Russian Research Institute of Plant Protection
Russian Federation

Nina M. Lashina, Cand. Sci. (Biology), Senior Researcher

3 Podbelskogo Hwy., Pushkin, St. Petersburg 196608



О. S. Afanasenko
All-Russian Research Institute of Plant Protection
Russian Federation

Olga S. Afanasenko, Dr. Sci. (Biology), Leading Researcher

3 Podbelskogo Hwy., Pushkin, St. Petersburg 196608



References

1. Adkar-Purushothama C.R., Perreault J.P. Alterations of the viroid regions that interact with the host defense genes attenuate viroid infection in host plant. RNA Biology. 2018;15(7):955-966. DOI: 10.1080/15476286.2018.1462653

2. Afanasenko O.S., Khiutti A.V., Mironenko N.V., Lashina N.M. Transmission of potato spindle tuber viroid between Phytophthora infestans and host plants. Vavilov Journal of Genetics and Breeding. 2022a;26(3):271-280. DOI: 10.18699/VJGB-22-34

3. Afanasenko O.S., Lashina N.M., Mironenko N.V., Kyrova E.I., Rogozina E.V., Zubko N.G. et al. Evaluation of responses of potato cultivars to potato spindle tuber viroid and to mixed viroid/viral infection. Agronomy. 2022b;12(12):2916. DOI: 10.3390/agronomy12122916

4. Aviña-Padilla K., Rivera-Bustamante R., Kovalskaya N.Y., Hammond R.W. Pospiviroid infection of tomato regulates the expression of genes involved in flower and fruit development. Viruses. 2018;10(10):516. DOI: 10.3390/v10100516

5. Bao S., Owens R.A., Sun Q., Song H., Liu Y., Eamens A.L. et al. Silencing of transcription factor encoding gene StTCP23 by small RNAs derived from the virulence modulating region of potato spindle tuber viroid is associated with symptom development in potato. PLoS Pathogens. 2019a;15(12):e1008110. DOI: 10.1371/journal.ppat.1008110

6. Bao S., Zhang Z., Lian Q., Sun Q., Zhang R. Evolution and expression of genes encoding TCP transcription factors in Solanum tuberosum reveal the involvement of StTCP23 in plant defence. BMC Genetics. 2019b;20(1):91. DOI: 10.1186/s12863-019-0793-1

7. Behjatnia A., Dry I., Krake L., Condé B.D., Connelly M.I., Randles J. et al. New potato spindle tuber viroid and tomato leaf curl geminivirus strains from a wild Solanum sp. Phytopathology. 1996;86:880-886. DOI: 10.1094/Phyto86-880

8. Cottilli P., Belda-Palazón B., Adkar-Purushothama C.R., Perreault J.P., Schleiff E., Rodrigo I. et al. Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Research. 2019;47(16):8649-8661. DOI: 10.1093/nar/gkz679

9. Fang Y., Zheng Y., Lu W., Li J., Duan Y., Zhang S. et al. Roles of miR319-regulated TCPs in plant development and response to abiotic stress. The Crop Journal. 2021;9(1):17-28. DOI: 10.1016/j.cj.2020.07.007

10. Góra A., Candresse T., Zagórski W. Analysis of the population structure of three phenotypically different PSTVd isolates. Archives of Virology. 1994;138(3-4):233-245. DOI: 10.1007/BF01379128

11. Góra A., Candresse T., Zagórski W. Use of intramolecular chimeras to map molecular determinants of symptom severity of potato spindle tuber viroid (PSTVd). Archives of Virology. 1996;141(11):2045-2055. DOI: 10.1007/BF01718214

12. Hadidi A., Flores R., Randles J.W., Palukaitis P. (eds.) Viroids and Satellites. Oxford; Cambridge, MA: Academic Press; 2017.

13. Kastalyeva T.B., Girsova N.V., Mozhaeva K.A., Lee I.M., Owens R.A. Molecular properties of potato spindle tuber viroid (PSTVd) isolates of the Russian Research Institute of Phytopathology. Molecular Biology. 2013;47(1):85-96. DOI: 10.1134/S0026893312060106

14. Katsarou K., Adkar-Purushothama C.R., Tassios E., Samiotaki M., Andronis C., Lisón P. et al. Revisiting the non-coding nature of pospiviroids. Cells. 2022;11(2):265. DOI: 10.3390/cells11020265

15. Keese P., Symons R.H. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proceedings of the National Academy of Sciences of the United States of America. 1985;82(14):4582-4586. DOI: 10.1073%2Fpnas.82.14.4582

16. Kitabayashi S., Tsushima D., Adkar-Purushothama C.R., Sano T. Identification and molecular mechanisms of key nucleotides causing attenuation in pathogenicity of dahlia isolate of potato spindle tuber viroid. International Journal of Molecular Sciences. 2020;21(19):7352. DOI: 10.3390/ijms21197352

17. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402-408. DOI: 10.1006/meth.2001.1262

18. Matsushita Y., Yanagisawa H., Khiutti A., Mironenko N., Ohto Y., Afanasenko O. Genetic diversity and pathogenicity of potato spindle tuber viroid and chrysanthemum stunt viroid isolates in Russia. European Journal of Plant Pathology. 2021;161(8):529-542. DOI: 10.1007/s10658-021-02339-z

19. Mironenko N.V., Kochetov A.V., Afanasenko O.S. Influence of allelic polymorphism of the 3’ untranslated region of the StTCP23 gene on the tolerance of potato varieties to the spindle tuber viroid. Proceedings on Applied Botany, Genetics and Breeding. 2023;184(1):137-143. [in Russian] DOI: 10.30901/2227-8834-2023-1-137-143

20. Owens R.A., Chen W., Hu Y., Hsu Y.H. Suppression of potato spindle tuber viroid replication and symptom expression by mutations which stabilize the pathogenicity domain. Virology. 1995;208(2):554-564. DOI: 10.1006/viro.1995.1186

21. Owens R.A., Girsova N.V., Kromina K.A., Lee I.M., Mozhaeva K.A., Kastalyeva T. Russian isolates of potato spindle tuber viroid exhibit low sequence diversity. Plant Disease. 2009;93(7):752-759. DOI: 10.1094/PDIS-93-7-0752

22. Qi Y., Ding B. Inhibition of cell growth and shoot development by a specific nucleotide sequence in a noncoding viroid RNA. The Plant Cell. 2003;15(6):1360-1374. DOI: 10.1105/tpc.011585

23. Ren L., Wu H., Zhang T., Ge X., Wang T., Zhou W. et al. Genomewide identification of TCP transcription factors family in sweet potato reveals significant roles of miR319-targeted TCPs in leaf anatomical morphology. Frontiers in Plant Science. 2021;12:686-698. DOI: 10.3389/fpls.2021.686698

24. Slugina M.A., Filyushin M.A., Meleshin A.A., Shchennikova A.V., Kochieva E.Z. Differences in the amylase inhibitor gene SbAI expression in potato during long-term tuber cold storage and in response to short-term cold stress. Russian Journal of Genetics. 2020;56(3):375-378. DOI: 10.1134/S1022795420030163

25. Wassenegger M., Spieker R.L., Thalmeir S., Gast F.U., Riedel L., Sänger H.L. A single nucleotide substitution converts potato spindle tuber viroid (PSTVd) from a noninfectious to an infectious RNA for Nicotiana tabacum. Virology. 1996;226(2):191-197. DOI: 10.1006/viro.1996.0646


Review

For citations:


Mironenko N.V., Orina A.S., Lashina N.M., Afanasenko О.S. Expression of the transcription factor encoding gene StTCP23 in potato plants infected with the tuber spindle viroid. Proceedings on applied botany, genetics and breeding. 2023;184(3):207-213. (In Russ.) https://doi.org/10.30901/2227-8834-2023-3-207-213

Views: 300


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)