Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Bread wheat callusogenesis and organogenesis using mature embryos as explants

https://doi.org/10.30901/2227-8834-2023-2-19-28

Abstract

   Background. Bread wheat (Triticum aestivum L.) is one of the staple cereal crops, so it is of great interest to breeders and researchers and requires constant monitoring of existing cultivars, including the development of new ones through classical breeding and modern gene engineering. The key stage in these techniques is successful callusogenesis and organogenesis in target objects. With this in view, the regeneration potential of two spring (‘Saratovskaya 55’ and ‘Sigma’) and three winter (‘Tanya’, ‘Fisht’ and ‘Pamyat’) cultivars of bread wheat was assessed, and optimal conditions were identified for callus induction and organogenesis using mature embryos.

   Materials and methods. Immature and mature embryos of the five bread wheat cultivars were used in the study. The in vitro morphogenetic potential was evaluated under the impact of abiotic factors: preliminary exposure of grains to cold and use of exogenous hormones (2,4-D in various concentrations). Pretreatment of wheat with cold was carried out as follows: sterilized grains were incubated on the hormonal medium at a temperature of 4 °C for 2 weeks, and then transferred to 26 °C for 4 more weeks. The efficiency of callusogenesis and rhizogenesis was assessed and the numbers of morphogenetic calluses, regenerated and acclimatized plants were calculated.

   Results and conclusions. The analysis made it possible to identify the bread wheat cultivars ‘Fisht’ and ‘Sigma’ for their high morphogenetic and regenerative potential. It was also shown that exposure to cold can serve as a good stimulating factor for producing a large number of calluses, but regenerants are better induced under normal conditions. The results also depended on the concentration of hormones applied. Universal conditions for morphogenesis and regeneration were not identified.

About the Authors

G. R. Gumerova
Ufa Federal Research Center of the Russian Academy of Sciences, Institute of Biochemistry and Genetics
Russian Federation

Gulnar R. Gumerova, Cand. Sci. (Biology), Researcher

71 Oktyabrya Ave., Ufa 450054, Russia



A. A. Galimova
Ufa Federal Research Center of the Russian Academy of Sciences, Institute of Biochemistry and Genetics; N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Ayzilya A. Galimova, Cand. Sci., (Biology), Researcher, UFRC RAS,  IBG UFRC RAS; VIR

71 Oktyabrya Ave., Ufa 450054, Russia;

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000, Russia



B. R. Kuluev
Ufa Federal Research Center of the Russian Academy of Sciences, Institute of Biochemistry and Genetics; N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Bulat R. Kuluev, Dr. Sci. (Biology), Professor, Leading Researcher, Head of a Laboratory, UFRC RAS,  IBG UFRC RAS; Leading Researcher VIR

71 Oktyabrya Ave., Ufa 450054, Russia;

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000, Russia



References

1. Adero M.O., Syombua E.D., Asanda L.K., Amugune N.O., Mulanda E.S., Macharia G. Somatic embryogenesis and regeneration of Kenyan wheat (Triticum aestivum L.) genotypes from mature embryo explants. African Journal of Biotechnology. 2019;18(27):689-694. URL: https://academicjournals.org/journal/AJB/article-stat/810258C61566

2. Ashraf A., Amhed N., Shahid M., Zahra T., Ali Z., Hussain A. et al. Effect of different media compositions of 2, 4-d, dicamba, and picloram on callus induction in wheat (Triticum aestivum L.). Biological and Clinical Sciences Research Journal. 2022;2022(1):159. DOI: 10.54112/bcsrj.v2022i1.159

3. Aydin M., Tosun M., Haliloglu K. Plant regeneration in wheat mature embryo culture. African Journal of Biotechnology. 2011;10(70):15749-15755. DOI: 10.5897/AJB11.1495

4. Barro F., Martin A., Lazzeri P. A., Barcel Barceló P. Medium optimization for efficient somatic embryogenesis and plant regeneration from immature inflorescences and immature scutella of elite cultivars of wheat, barley and tritordeum. Euphytica. 1999;108:161-167. DOI: 10.1023/A:1003676830857

5. Bartók T., Sági F. A new endosperm-supported callus induction method for wheat (Triticum aestivum L.). Plant Cell, Tissue and Organ Culture. 1990;22:37-41. DOI: 10.1007/BF00043696

6. Benkirane H., Sabounji K., Chlyah A., Chlyah H. Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat. Plant Cell, Tissue and Organ Culture. 2000;61:107-113. DOI: 10.1023/A:1006464208686

7. Chopra A., Goyal S., Singhal P., Gupta M., Singh R., Sharma A.K., Sharma P. An optimized protocol for seed sterilization and shoot regeneration from mature embryo in wheat (Triticum aestivum L.) var. HD2967. Letters in Applied NanoBioSciense. 2022;12(4):129. DOI: 10.33263/LIANBS124.129

8. Delporte F., Mostade O., Jacquemin J. M. Plant regeneration through callus initiation from thin mature embryo fragments of wheat. Plant Cell, Tissue and Organ Culture. 2001;67(1):73-80. DOI: 10.1023/A:1011697316212

9. Filippov M., Miroshnichenko D., Vernikovskaya D., Dolgov S. The effect of auxins, time exposure to auxin and genotypes on somatic embryogenesis from mature embryos of wheat. Plant Cell, Tissue and Organ Culture. 2006;84(2):213-222. DOI: 10.1007/s11240-005-9026-6

10. Hafeez I., Sadia B., Sadaqat N. A., Kainth R. A., Iqbal M. Z., Khan I. A. Establishment of efficient in vitro culture protocol for wheat land races of Pakistan. African Journal of Biotechnology. 2012;11(11):2782-2790. DOI: 10.5897/AJB11.2126

11. Kanbar O.Z., Lantos C., Kiss E., Pauk J. Efficient in vitro anther culture for androgenic plant production in F3-6 winter wheat (Triticum aestivum L.) bulk combinations. Indian Journal of Biotechnology. 2022;20(3):284-293.

12. Kyriienko A.V., Shcherbak N.L., Kuchuk M.V., Parii M.F., Symonenko Y.V. In vitro plant regeneration from mature embryos of amphidiploid spelt Triticum spelta L. In Vitro Cellular and Developmental Biology – Plant. 2021;57(6):856-863. DOI: 10.1007/s11627-021-10158-4

13. Marcinska I., Biesaga-Koscielniak J., Dubert F. Effect of vernalization conditions on growth and differentiation of callus from immature embryos and on generative development of regenerated plants of winter wheat. Acta Physiologiae Plantarum. 1996;18(1):67-74.

14. McHughen A. Rapid regeneration of wheat in vitro. Annals of Botany. 1983;51(6):851-853.

15. Miroshnichenko D.N., Poroshin G.N., Dolgov S.V. Genetic transformation of wheat using mature seed tissues. Applied Biochemistry and Microbiology. 2011;47(8):767-775. DOI: 10.1134/S0003683811080096

16. Miroshnichenko D.N., Sokolov R.N., Alikina O.V., Dolgov S.V. Comparative analysis of tissue culture efficiency of di-, tetra- and hexaploid wheat breeds and species. Russian Journal of Biotechnology. 2014;(1):38-51.

17. Orshinsky B.R., Sadasivaiah R.S. Effect of plant growth conditions, plating density, and genotype on the anther culture response of soft white spring wheat hybrids. Plant Cell Reports. 1997;16(11):758-762. DOI: 10.1007/s002990050315

18. Poddar S., Tanaka J., Running K.L.D., Kariyawasam G.K., Faris J.D., Friesen T.L. et al. Optimization of highly efficient exogenous-DNA-free Cas9-ribonucleoprotein mediated gene editing in disease susceptibility loci in wheat (Triticum aestivum L.). Frontiers in Plant Science. 2022;13:1084700. DOI: 10.3389/fpls.2022.1084700

19. Repellin A., Båga M., Jauhar P.P., Chibbar R.N. Genetic enrichment of cereal crops via alien gene transfer: New challenges. Plant Cell, Tissue and Organ Culture. 2001;64(2):159-183. DOI: 10.1023/A:1010633510352

20. Sparks C.A., Jones H.D. Biolistics transformation of wheat. Methods in Molecular Biology. 2009;478:71-92. DOI: 10.1007/978-1-59745-379-0_4

21. Stober A., Hessu D. Spike pretreatments, anther culture conditions, and anther culture response of 17 German varieties of spring wheat (Triticum aestivum L.). Plant Breeding. 1997;116(5):443-447. DOI: 10.1111/j.1439-0523.1997.tb01028.x

22. Stupko V.Yu., Zobova N.V., Surin N.A. Selecting conditions to develop stress resistant forms of spring soft wheat in vitro. Siberian Herald of Agricultural Science. 2008;6(186):20-26. [in Russian]

23. Wernicke W., Brettell R. Somatic embryogenesis from Sorghum bicolor leaves. Nature. 1980;287(5778):138-139. DOI: 10.1038/287138a0

24. Yin G.X., Wang Y.L., She M.Y., Du L.P., Xu H.J., Ma J.X. et al. Establishment of a highly efficient regeneration system for the mature embryo culture of wheat. Agricultural Sciences in China. 2011;10(1):9-17. DOI: 10.1016/S1671-2927(11)60302-7

25. Zamora A.B., Scott K.J. Callus formation and plant regeneration from wheat leaves. Plant Science Letters. 1983;29(2-3):183-189. DOI: 10.1016/0304-4211(83)90142-6


Review

For citations:


Gumerova G.R., Galimova A.A., Kuluev B.R. Bread wheat callusogenesis and organogenesis using mature embryos as explants. Proceedings on applied botany, genetics and breeding. 2023;184(2):19-28. (In Russ.) https://doi.org/10.30901/2227-8834-2023-2-19-28

Views: 627


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)