Influence of the toxic effect of zinc and mineral starvation on the growth and development of buckwheat plantlets in vitro
https://doi.org/10.30901/2227-8834-2023-2-9-18
Abstract
Background. Common buckwheat is a cereal crop with high potential for genetic improvement in terms of developing breeding material resistant to abiotic stressors. To date, there have been no reports on in vitro production of buckwheat plantlets resistant to high doses of zinc and a lack of macronutrients.
Materials and methods. Aseptic single-node cuttings from the obtained regenerated plants of common buckwheat cultivars ‘Dikul’ and ‘Izumrud’ were cultivated in vitro on nutrient media with the addition of the selection factor ZnSO4 × 7 H2O in a concentration of 808–1313 mg/L. Survived plants were microcloned on nutrient media without macrosalts for mineral starvation modeling. Morphological traits and general nonspecific adaptation reactions of the plantlets were evaluated for the following characteristics: plant height, the number of internodes, the number of leaves, leaf blade length, the presence of roots, and leaf color.
Results. According to the results of the 33-day cultivation of test-tube microcuttings on media with zinc toxicity, 33–91 % of lines resistant to ionic stress were selected in different variants. The secondary testing of the plantlets under conditions of mineral starvation in vitro turned out to be the strongest inhibitory factor for buckwheat. At the same time, high resistance to stress was observed in cv. ‘Dikul’. Cultivation of the obtained buckwheat lines on the MS nutrient medium for two passages showed a sufficiently high level of regeneration in the studied genotypes. The test-tube buckwheat plantlets obtained under selective conditions are promising material for further breeding as well as for studying the possibility of their use as phytoremediators.
Keywords
About the Authors
S. А. BorovayaRussian Federation
Svetlana А. Borovaya, Postgraduate Student, Researcher
30 Volozhenina St., Timiryazevsky Settlem., Ussuriysk 692539, Russia
A. G. Klykov
Russian Federation
Aleksey G. Klykov, Dr. Sci. (Biology), Full Member of the RAS, Head of a Department
30 Volozhenina St., Timiryazevsky Settlem., Ussuriysk 692539, Russia
E. N. Barsukova
Russian Federation
Elena N. Barsukova, Cand. Sci. (Agriculture), Leading Researcher, Acting Head of a Laboratory
30 Volozhenina St., Timiryazevsky Settlem., Ussuriysk 692539, Russia
References
1. Barsukova E.N., Klykov A.G., Chikina E.L. Usage of the tissue culture method for the development of new forms of Fagopyrum esculentum Moench. Russian Agricultural Science. 2019;(5):3-6. [in Russian] DOI: 10.31857/S2500-2627201953-6
2. Barsukova E.N., Klykov A.G., Fisenko P.V., Borovaya S.A., Chaykina E.L. Usage of the method of biotechnology in the selection of buckwheat plants in the Far East. Vestnik of Far Eastern Branch of Russian Academy of Sciences. 2020;(4):58-66. [in Russian] DOI: 10.37102/08697698.2020.212.4.010
3. Chrungoo N.K., Dohtdong L., Chettry U. Chapter ten – Phenotypic plasticity in buckwheat. In: M. Zhou, I. Kreft, S. H. Woo, N. Chrungoo, G. Wieslander (eds). Molecular Breeding and Nutritional Aspects of Buckwheat. Cambridge, MA: Academic Press; 2016. p.137-149. DOI: 10.1016/B978-0-12-803692-1.00010-9
4. Dunaeva S.E., Pendinen G.I., Antonova O.Yu., Shvachko N.A., Ukhatova Yu.V., Shuvalova L.E., Volkova N.N., Gavrilenko T.A. Preservation of vegetatively propagated crops in vitro and cryo collections: methodological guidelines (Sokhraneniye vegetativno razmnozhayemykh kultur v in vitro i krio kollektsiyakh: metodicheskiye ukazaniya). Gavrilenko T.A. (ed.). 2<sup>nd</sup> ed. St. Petersburg: VIR; 2017. [in Russian]
5. Fesenko A.N., Fesenko I.N. Buckwheat breeding and production in Russia during the past 100 years. Proceedings on Applied Botany, Genetics and Breeding. 2019;180(1):113-117. [in Russian] DOI: 10.30901/2227-8834-2019-1-113-117
6. Fesenko N.V. Breeding and seed production of buckwheat (Selektsiya i semenovodstvo grechikhi). Moscow: Kolos; 1983. [in Russian].
7. Gharam M.J., Heavener D.L., Nickell C.D., Widholm J.M. Response of soybean genotypes to boron, zinc and manganese deficiency in tissue culture. Plant and Soil. 1993;150(2):307-310.
8. Gladkov E.A. Cell selection of Agrоstis stolonífera plants possessing resistance to heavy metals and salinization. Russian Journal of Biotechnology. 2010;(6):72-74. [in Russian]
9. Kabata-Pendias A., Pendias H. Trace elements in soils and plants. 3<sup>rd</sup> ed. Boca Raton, FL: CRC Press; 2001.
10. Kaznina N.M., Titov A.F. Effect of zinc deficiency and excess on the growth and photosynthesis of winter wheat. Journal of Stress Physiology and Biochemistry. 2017;13(4):88-94.
11. Klykov A.G., Barsukova E.N., Chaikina E.L., Anisimov M.M. Prospects and results of selection of Fagopyrum esculentum Moench for increased flavonoid content. Vestnik of Far Eastern Branch of Russian Academy of Sciences. 2019;3(205):5-16. [in Russian] DOI: 10.25808/08697698.2019.205.3.001
12. Kreft I. Buchweizen Slowenien. In: I. Kreft, C. Ries, C. Zewen (eds). Das Buchweizen Buch: mit Rezepten aus aller Welt. 2. Überarbeitete und erweiterte Aufl. Arzfeld: Islek ohne Grenzen EWIV; 2007. p. 71-79. [in German]
13. Li L., Huang X., Borthakur D., Ni H. Photosynthetic activity and antioxidative response of seagrass Thalassia hemprichii to trace metal stress. Acta Oceanologica Sinica. 2012;(3):98-108. DOI: 10.1007/s13131-012-0210-3
14. Lyubenova L., Nehnevajova Е., Herzig R., Schröder Р. Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals. Environmental Science and Pollution Research International. 2009;16(5):573-581. DOI: 10.1007/s11356-009-0175-8
15. Maleva M.G., Nekrasova G.F., Borisova G.G., Chukina N.V., Ushakova O.S. Effect of heavy metals on photosynthetic apparatus and antioxidant status of Elodea. Russian Journal of Plant Physiology. 2012;59(2):190-197. DOI: 10.1134/S1021443712020069
16. Murashige T., Skoog F. A. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 1962;15(3):473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x
17. Naik P.M., Godbole M., Nagella P., Hosakatte N.M. The effect of heavy metals on in vitro adventitious shoot production and bacoside А content in Bacopa Monnieri (L). Mapana Journal of Sciences. 2015;14(4):1-10. DOI: 10.12723/mjs.35.1
18. Rout G.R., Samantaray S., Das Р. In vitro selection and biochemical characterisation of zinc and manganese adapted callus lines in Brassica spp. Plant Science. 1999;146(2):89-100. DOI: 10.1016/S0168-9452(99)00080-1
19. Samantaray S., Rout G. R., Das P. In vitro selection and regeneration of zinc tolerant calli from Setaria italica L. Plant Science. 1999;143(2):201-209. DOI: 10.1016/S0168-9452(99)00036-9
20. Sheflin A.M., Chiniquy D., Yuan C., Goren E., Kumar I., Braud M. et al. Metabolomics of sorghum roots during nitrogen stress reveals compromised metabolic capacity for salicylic acid biosynthesis. Plant Direct. 2019;3(3):e00122. DOI: 10.1002/pld3.122
21. Shupletsova O.N. In vitro selective systems for obtaining barley genotypes with complex resistance to soil stressors (Selektivnye sistemy in vitro dlya polucheniya genotipov yachmenya s kompleksnoy ustoychivostyu k pochvennym stressovym faktoram) [dissertation]. Kirov; 2019. [in Russian] URL: https://www.dissercat.com/content/selektivnye-sistemy-in-vitro-dlya-polucheniya-genotipov-yachmenya-s-kompleksnoi-ustoichivost [дата обращения: 11.10.2022].
22. Skugoreva S.G., Aschikhmina T.Ya., Fokina A.I., Lyapina E.I. Chemical grounds of toxic effect of heavy metals (review). Theoretical and Applied Ecology. 2016;(1):4-10. [in Russian] DOI: 10.25750/1995-4301-2016-1-014-019
23. Titov A.F., Talanova V.V., Kaznina N.M., Laydinen G.F. Plant resistance to heavy metals (Ustoychivost rasteniy k tyazhelym metallam). N. N. Nemov (ed.). Petrozavodsk; 2007. [in Russian]
24. Uzakov Z. Z. Heavy metals and their effect on plants (Tyazhelye metally i ikh vliyaniye na rasteniya). Simvol nauki = Symbol of Science. 2018;(1-2):52-54. [in Russian]
25. Zhang J., Jiang F., Shen Y., Zhan Q., Bai B., Chen W. et al. Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC Plant Biology. 2019;19(1):306. DOI: 10.1186/s12870-019-1914-8
Review
For citations:
Borovaya S.А., Klykov A.G., Barsukova E.N. Influence of the toxic effect of zinc and mineral starvation on the growth and development of buckwheat plantlets in vitro. Proceedings on applied botany, genetics and breeding. 2023;184(2):9-18. (In Russ.) https://doi.org/10.30901/2227-8834-2023-2-9-18