Genetic diversity of wild barley (Hordeum spontaneum K. Koch) in the context of resistance to toxic aluminum ions
https://doi.org/10.30901/2227-8834-2023-1-215-224
Abstract
Background. The problem of resistance to aluminum toxicity of soils is very relevant for the cultivated type of barley. The area of acidic soils in Russia is about forty percent of the total area of arable land, so the toxicity of aluminum is one of the main factors that reduce the yield of barley. The study of wild relatives of the main crops, including barley, is of considerable interest for the development of stress-resistant cultivars. Wild barley Hordeum spontaneum K. Koch has biological characteristics similar to the cultivated H. vulgare L., grows in various ecogeographic zones, and is well adapted to local soil and climate conditions. All this makes it possible to use it as a new donor of source material for breeding high-yielding cultivars adapted to certain environmental conditions. The objective of this work was to search for H. spontaneum genotypes highly resistant to ionic (Al3+) toxicity.
Materials and methods. One hundred accessions of H. spontaneum from the collection of the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) were examined. The resistance of barley accessions to toxic aluminum ions was studied at the early stages of plant development by the root test method (185 mcМ Al3+, pH 4.0) with the calculation of root and sprout length indices.
Results and conclusions. The studied fragment of the wild barley collection demonstrated broad genetic diversity in terms of resistance to phytotoxic aluminum ions. Laboratory assessment allowed us to identify barley genotypes differing in the reaction of their roots and sprouts at the early phases of ontogenesis. The identified genotypes with a high level of resistance to ion stress can be used as a valuable source of genetic material to improve existing cultivars and develop new ones by introgression of foreign resistance genes.
About the Author
O. V. YakovlevaRussian Federation
Cand. Sci. (Biology), Senior Researcher
42, 44 Bolshaya Morskaya Street, St. Petersburg 190000, Russia
References
1. Ahmed I.M., Nadira U.A., Qiu C.W., Cao F., Zhang G., Holford P. et al. Tolerance to drought, low pH and Al combined stress in Tibetan wild barley is associated with improvement of ATPase and modulation of antioxidant defense system. International Journal of Molecular Sciences. 2018;19(11):3553. DOI: 10.3390/ijms19113553
2. Azamparsa M.R., Karakaya A., Ergün N., Sayim I., Murat Duran R., Özbek K. Identification of barley landraces and wild barley (Hordeum spontaneum) genotypes resistant to Rhynchosporium commune. Tarım Bilimleri Dergisi = Journal of Agricultural Sciences. 2018;25(4):530-535. DOI: 10.15832/ankutbd.441916
3. Baymetov K.I., Abdullaev F.H. Status of wild relatives of barley (Hordeum L.) in Uzbekistan. Academic Research in Educational Sciences. 2021;2(12):1085-1095. [in Russian]. DOI: 10.24412/2181-1385-2021-12-1085-1095
4. Cai S., Wu D., Jabeen Z., Huang Y., Huang Y., Zhang G. Genomewide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. PLoS One. 2013;8(7):e69776. DOI: 10.1371/journal.pone.0069776
5. Dawson I.K., Russell J., Powell W., Steffenson B., William T.B. Thomas W.T.B. et al. Barley: a translational model for adaptation to climate change. New Phytologist. 2015;206(3):913-931. DOI: 10.1111/nph.13266
6. Dreiseitl A. Heterogeneity of powdery mildew resistance revealed in accessions of the ICARDA wild barley collection. Frontiers in Plant Science. 2017;8:202. DOI: 10.3389/fpls.2017.00202
7. Gong X., Li C., Zhang G., Yan G., Lance R., Sun D. Novel genes from wild barley Hordeum spontaneum for barley improvement. In: G. Zhang, C. Li, X. Lui (eds). Advance in Barley Sciences: Proceedings of 11th International Barley Genetics Symposium. Dordrecht: Springer; 2013. p.69-86. DOI: 10.1007/978-94-007-4682-4_6
8. Klimashevsky E.L. Genetic aspect of plant mineral nutrition (Geneticheskiy aspekt mineralnogo pitaniya rasteniy). Moscow: Agropromizdat; 1991. [in Russian].
9. Lei L., Poets A.M., Liu C., Wyant S.R., Hoffman P.J., Carter C.K. et al. Environmental association identifies candidates for tolerance to low temperature and drought. G3 (Bethesda, MD). 2019;9(10):3423-3438. DOI: 10.1534/g3.119.400401
10. Lukyanova M.V., Trofimovskaya A.Y., Gudkova G.N., Terentieva I.A., Jarosh N.P. Cultivated Flora of the USSR. Vol. 2, Pt 2. Barley (Yachmen). V.D. Kobylyansky, M.V. Lukyanova (eds). Leningrad: Agropromizdat; 1990. [in Russian].
11. Nevo E., Fu Y.B., Pavlicek T., Khalifa S., Tavasi M., Beiles A. Evolution of wild cereals during 28 years of global warming in Israel. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(9):3412-3415. DOI: 10.1073/pnas.1121411109
12. Pan W., Shen J., Zheng Z., Yan X., Shou J., Wang W. et al. Overexpression of the Tibetan plateau annual wild barley (Hordeum spontaneum) HsCIPKs enhances rice tolerance to heavy metal toxicities and other abiotic stresses. Rice (New York, NY). 2018;11(1):51. DOI: 10.1186/s12284-018-0242-1
13. Prikazyuk E.G., Smekalova T.N. Features of the distribution of wild barley varieties (Hordeum spontaneum C. Koch) in connection with the problem of the origin of the species (Osobennosti rasprostraneniya raznovidnostey dikogo yachmenya (Hordeum spontaneum C. Koch) v svyazi s problemoy proiskhozhdeniya vida). Advances in Current Natural Sciences. 2013;(8):27. [in Russian].
14. Shen Q., Yu J., Fu L., Wu L, Dai F., Jiang L. et al. Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley. Plant Physiology and Biochemistry. 2018;123:319-330. DOI: 10.1016/j.plaphy.2017.12.032
15. Thormann I., Reeves P., Reilley A., Engels J.M.M., Lohwasser U, Börner A. et al. Geography of genetic structure in barley wild relative Hordeum vulgare subsp. spontaneum in Jordan. PLoS One. 2016;11(8):e0160745. DOI: 10.1371/journal.pone.0160745
16. Trofimovskaya A.Ya. Barley (Yachmen). Leningrad: Kolos; 1972. [in Russian].
17. Wang X., Chen Z.H., Yang C., Zhang X., Jin G., Chen G. et al. Genomic adaption to drought in wild barley is driven by edaphic natural selection at the Tabigha Evolution Slope. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(20):5223-5228. DOI: 10.1073/pnas.1721749115
18. Wu D., Qiu L., Xu L., Ye L., Chen M., Sun D. et al. Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS One. 2011;6(7):e22938. DOI: 10.1371/journal.pone.0022938
19. Yakovleva O.V. Aluminum resistance of malting barley. Proceedings on Applied Botany, Genetics and Breeding. 2021;182(4):126-131. [in Russian]. DOI: 10.30901/2227-8834-2021-4-126-131
20. Yakovleva O.V. Phytotoxicity of aluminum ions. Proceedings on Applied Botany, Genetics and Breeding. 2018;179(3):315-331. [in Russian]. DOI: 10.30901/2227-8834-2018-3-315-331
21. Yakovleva O.V., Kapeshinsky A.M., Kovaleva O.N. Aluminium toxic ions tolerance in cultivated and wild barley. Proceedings on Applied Botany, Genetics and Breeding. 2009;165:51-54. [in Russian].
Review
For citations:
Yakovleva O.V. Genetic diversity of wild barley (Hordeum spontaneum K. Koch) in the context of resistance to toxic aluminum ions. Proceedings on applied botany, genetics and breeding. 2023;184(1):215-224. (In Russ.) https://doi.org/10.30901/2227-8834-2023-1-215-224