Mineral composition of bread wheat lines with introgressions of alien genetic material
https://doi.org/10.30901/2227-8834-2023-1-42-52
Abstract
Background. Modern bread wheat (Triticum aestivum L.) cultivars developed mainly to increase productivity often contain low concentrations of minerals in their grain. Wild and primitive wheats demonstrate rich genetic diversity, including the content of minerals in the grain, and can be used to improve the wheat gene pool for this trait. The aim of this work was to study the mineral composition in the grain of bread wheat lines with introgressions of the genetic material from Triticum L. spp.
Materials and methods. We studied parental spring bread wheat cultivars, accessions of tetraploid and hexaploid Triticum spp., and 20 introgressive lines obtained on their basis in 2018 and 2020. Concentrations of macro- (K, P, Ca, and Mg) and micronutrients (Zn, Fe, Cu, and Mn) were measured using atomic emission spectrometry with inductively coupled plasma, and total protein content in wheat grain according to GOST 10846-91. The data were processed using the Statistica 10.0 and MS Excel software packages.
Results and conclusion. The content of minerals in the grain of Triticum spp. was higher than in T. aestivum cultivars (the twoyear average difference was 1,02 to 2,13-fold, depending on the studied mineral). Most of the lines with alien genetic material exceeded their parent bread wheat cultivars in Zn, Fe, Cu and Mn content and came close to them in the levels of N, P, Mg and K. ANOVA established a statistically significant impact of the genotype, environment, and genotype × environment interaction on the variation of the grain macro- and micronutrient content. Lines with a consistently high concentration of grain minerals and high productivity were identified. These lines are of interest for wheat breeding for grain quality.
Keywords
About the Authors
O. A. OrlovskayaBelarus
Cand. Sci. (Biology), Deputy Head of a Laboratory
27 Akademicheskaya St., Minsk 220072, Belarus
S. I. Vakula
Belarus
Cand. Sci. (Biology), Senior Researcher
27 Akademicheskaya St., Minsk 220072, Belarus
L. V. Khotyleva
Belarus
Dr. Sci. (Biology), Chief Researcher
27 Akademicheskaya St., Minsk 220072, Belarus
A. V. Kilchevsky
Belarus
Dr. Sci. (Biology), Chief Researcher
27 Akademicheskaya St., Minsk 220072, Belarus
References
1. Balint A.F., Kovacs G., Erdei L., Sutka J. Comparison of the Cu, Zn, Fe, Ca and Mg contents of the grains of wild, ancient and cultivated wheat species. Cereal Research Communications. 2001;29(3-4):375-382. DOI: 10.1007/BF03543684
2. Cakmak I., Ozkan H., Braun H.J., Welch R.M., Romheld V. Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food and Nutrition Bulletin. 2000;21(4):401-403. DOI: 10.1177/156482650002100411
3. Cakmak I., Pfeiffer W.H., McClafferty B. Biofortification of durum wheat with zinc and iron. Cereal Chemistry. 2010;87(1):10-20. DOI: 10.1094/CCHEM-87-1-0010
4. Cakmak I., Torun A., Millet E., Feldman M., Fahima T., Korol A. et al. Triticum dicoccoides: An important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Science and Plant Nutrition. 2004;50(7):1047-1054. DOI: 10.1080/00380768.2004.10408573
5. Chatzav M., Peleg Z., Ozturk L., Yazici A., Fahima T., Cakmak I. et al. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Annals of Botany. 2010;105(7):1211-1220. DOI: 10.1093/aob/mcq024
6. Gomez-Becerra H.F., Yazici A., Ozturk L., Budak H., Peleg Z., Morgounov A. et al. Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica. 2010;171(1):39-52. DOI: 10.1007/s10681-009-9987-3
7. GOST 10846-91. Interstate standard. Grain and products of its processing. Method for determination of protein. Moscow: Standartinform; 2009. [in Russian]. URL: https://docs.cntd.ru/document/1200023864 [дата обращения: 10.08.2022].
8. Gupta P.K., Balyan H.S., Sharma S., Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. Theoretical and Applied Genetics. 2021;134(1):1-35. DOI: 10.1007/s00122-020-03709-7
9. Hänsch R., Mendel R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology. 2009;12(3):259-266. DOI: 10.1016/j.pbi.2009.05.006
10. Khokhar J.S., Sareen S., Tyagi B.S., Singh G., Wilson L., King I.P. et al. Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat. PLoS One. 2018;13(1):e0192026. DOI: 10.1371./journal.pone.0192026
11. Kumar A., Kapoor P., Chunduri V., Sharma S., Garg M. Potential of Aegilops sp. for improvement of grain processing and nutritional quality in wheat (Triticum aestivum). Frontiers in Plant Science. 2019;10:308. DOI: 10.3389/fpls.2019.00308
12. Leonova I.N., Salina E.A., Shumny V.K., Badaeva E.D., Orlovskaya O.A., Khotyleva L.V. et al. Comparative characteristic of Triticum aestivum/Triticum durum and Triticum aestivum/Triticum dicoccum hybrid lines by genomic composition and resistance to fungal diseases under different environmental conditions. Russian Journal of Genetics. 2013;49(11):1276-1283. DOI: 10.1134/S1022795413110136
13. Liu J., Huang L., Li T., Liu Y., Yan Z., Tang G. et al. Genome-wide association study for grain micronutrient concentrations in wheat advanced lines derived from wild emmer. Frontiers in Plant Science. 2021;12:651283. DOI: 10.3389/fpls.2021.651283
14. Marschner P. (ed.). Marschner’s mineral nutrition of higher plants. 3rd ed. London: Academic Press; 2011. DOI: 10.1016/C2009-0-63043-9
15. Morgounov A., Gomez-Becerra H.F., Abugalieva A., Dzhunusova M., Yessimbekova M., Muminjanov H. et al. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica. 2007;155(1-2):193-203. DOI: 10.1007/s10681-006-9321-2
16. Murphy K.M., Reeves P.G., Jones S.S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica. 2008;163(3):381-390. DOI: 10.1007/s10681-008-9681-x
17. Oikeh S.O., Menkir A., Maziya-Dixon B., Welch R., Glahn R.P., Gauch Jr. G. Environmental stability of iron and zinc concentrations in grain of elite early-maturing tropical maize genotypes grown under field conditions. The Journal of Agricultural Science. 2004;142(5):543-551. DOI: 10.1017/S0021859604004733
18. Orlovskaya О., Dubovets N., Solovey L., Leonova I. Molecular cytological analysis of alien introgressions in common wheat lines derived from the cross of Triticum aestivum with T. kiharae. BMC Plant Biology. 2020;20 (Suppl. 1):201. DOI: 10.1186/s12870-020-02407-2
19. Peleg Z., Cakmak I., Ozturk L., Yazici A., Jun Y., Budak H. et al. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theoretical and Applied Genetics. 2009;119(2):353-369. DOI: 10.1007/s00122-009-1044-z
20. Peleg Z., Saranga Y., Yazici A., Fahima T., Ozturk L., Cakmak I. Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil. 2008;306:57-67. DOI: 10.1007/s11104-007-9417-z
21. Rokitsky P.F. Biological statistics (Biologicheskaya statistika). 3rd ed. Minsk; 1973. [in Russian] (Рокицкий П.Ф. Биологическая статистика. 3-е изд. Минск; 1973).
22. Tiwari V.K., Rawat N., Neelam K.,·Kumar S., Randhawa G.S., Dhaliwal H.S. Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theoretical and Applied Genetics. 2010;121(2):259-269. DOI: 10.1007/s00122-010-1307-8
23. Zhao F.J., Su Y.H., Dunham S.J., Rakszegi M., Bedo Z., McGrath S.P. et al. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. Journal of Cereal Science. 2009;49(2):290-295. DOI: 10.1016/j.jcs.2008.11.007
Review
For citations:
Orlovskaya O.A., Vakula S.I., Khotyleva L.V., Kilchevsky A.V. Mineral composition of bread wheat lines with introgressions of alien genetic material. Proceedings on applied botany, genetics and breeding. 2023;184(1):42-52. (In Russ.) https://doi.org/10.30901/2227-8834-2023-1-42-52