Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Bioactive peptides and antinutrients in chickpea: description and properties (a review)

https://doi.org/10.30901/2227-8834-2022-1-214-223

Abstract

Legumes are a rich source of many different biologically active substances, such as fiber, proteins, vitamins and minerals. Chickpea (Cicer arietinum L.) is the third most important leguminous plant in the world: it has high nutritional value and is a source of a wide range of bioactive compounds. Bioactive peptides of chickpea seeds have antioxidant, ACE-inhibiting, cholesterollowering, antihypertensive, antimicrobial, antithrombotic, immunomodulatory, and opioid activities as well as the ability to bind minerals. But despite the benefits and high nutritional value, chickpea seeds contain antinutrients that reduce their nutritional and biological advantages. These antinutritional factors include condensed tannins, raffinose, and phytic acid. Research has shown that cooking, pregermination or fermentation can effectively reduce the indigestible content of chickpea seeds. For this purpose, it is recommended to use certain physical, chemical or biological methods: heat treatment, soaking and/or germination, enzymatic hydrolysis, irradiation, etc.
This review article presents the world’s results of research aimed at studying bioactive chickpea peptides derived from chickpea seeds and ways of their formation as well as methods for elimination of antinutritional factors.

About the Authors

M. Ahangaran
Moscow State University of Food Production
Russian Federation

Mahboobeh Ahangaran, Postgraduate Student

11 Volokolamskoe Highway, Moscow 125080



D. A. Afanasev
V.M. Gorbatov Federal Center for Food Systems of the Russian Academy of Sciences
Russian Federation

Dmitry A. Afanasev, Postgraduate Student

26 Talalikhina St., Moscow 10 9316



I. M. Chernukha
V.M. Gorbatov Federal Center for Food Systems of the Russian Academy of Sciences
Russian Federation

Irina M. Chernukha, Dr. Sci. (Engineering), Full Member (Academician) of the RAS, Chief Researcher, Professor

26 Talalikhina St., Moscow 10 9316



N. G. Mashentseva
Moscow State University of Food Production
Russian Federation

Natalya G. Mashentseva, Dr. Sci. (Engineering), Professor of the RAS, Professor

11 Volokolamskoe Highway, Moscow 125080



M. Gharaviri
Moscow State University of Food Production
Russian Federation

Mahmud Gharaviri, Postgraduate Student

11 Volokolamskoe Highway, Moscow 125080



References

1. Agriculture & Agri-Food Canada. Chickpeas: Situation and outlook. Bi-weekly Bulletin. 2006;19(13):1-4.

2. Aluko R.E. Bioactive peptides. In: Functional Foods and Nutraceuticals. Food Science Text Series. New York, NY: Springer; 2012. p.37-61. DOI: 10.1007/978-1-4614-3480-1_3

3. Aluko R.E. Determination of nutritional and bioactive properties of peptides in enzymatic pea, chickpea, and mung bean protein hydrolysates. Journal of AOAC International. 2008;91(4):947-956. DOI: 10.1093/jaoac/91.4.947

4. Belović M.M., Mastilović J.S., Torbica A.L., Tomić J.M., Stanić D.R., Džinić N.R. Potential of bioactive proteins and peptides for prevention and treatment of mass non-communicable diseases. Food and Feed Research. 2011;38(2):51-61.

5. Boyaci Gunduz C.P., Gaglio R., Franciosi E., Settanni L., Erten H. Molecular analysis of the dominant lactic acid bacteria of chickpea liquid starters and doughs and propagation of chickpea sourdoughs with selected Weissella confuse. Food Microbiology. 2020;91:103490. DOI: 10.1016/j.fm.2020.103490

6. Bulbula D.D., Urga K. Study on the effect of traditional processing methods on nutritional composition and antinutritional factors in chickpea (Cicer arietinum L.). CogentFood & Agriculture. 2018;4(1):1422370. DOI: 10.1080/23311932.2017.1422370

7. Chen H., Ma H.R., Gao Y.H., Zhang X., Habasi M., Hu R. et al. Isoflavones extracted from chickpea Cicer arietinum L. sprouts induce mitochondria-dependent apoptosis in human breast cancer cells. Phytotherapy Research. 2015;29(2):2010-2019. DOI: 10.1002/ptr.5241

8. Coda R., Di Cagno R., Gobbetti M., Rizzello C.G. Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation. Food Microbiology. 2014;37:51-58. DOI: 10.1016/j.fm.2013.06.018

9. Curiel J.A., Coda R., Centomani I., Summo C., Gobbetti M., Rizzello C.G. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: the potential of sourdough fermentation. International Journal of Food Microbiology. 2015;196;51-61. DOI: 10.1016/j.ijfoodmicro.2014.11.032

10. De Pasquale I., Pontonio E., Gobbetti M., Rizzello C.G. Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours. International Journal of Food Microbiology. 2020;316;108426. DOI: 10.1016/j.ijfoodmicro.2019.108426

11. Domoney C. Inhibitors of legume seeds. In: P.R. Shewry, R. Casey (eds). Seed Proteins. Dordrecht: Springer; 1999. p.635-655. DOI: 10.1007/978-94-011-4431-5_27

12. FitzGerald R.J., Murray B.A., Walsh D.J. Hypotensive peptides from milk proteins. The Journal of Nutrition. 2004;134(4):980S-988S. DOI: 10.1093/jn/134.4.980S

13. Ghribi A.M., Sila A., Przybylski R., Nedjar-Arroume N., Makhlouf I., Blecker C. et al. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietunum L.) protein concentrate. Journal of functional foods. 2015;12:516-525. DOI: 10.1016/j.jff.2014.12.011

14. Girón-Calle J., Alaiz M., Vioque J. Effect of chickpea protein hydrolysates on cell proliferation and in vitro bioavailability. Food Research International. 2010;43(5):1365-1370. DOI: 10.1016/j.foodres.2010.03.020

15. Gobbetti M., Minervini F., Rizzello C.G. Angiotensin I-converting-enzyme-inhibitory and antimicrobial bio active peptides. International Journal of Dairy Technology. 2004;57(2-3):173-188. DOI: 10.1111/j.1471-0307.2004.00139.x

16. Gupta N., Bhagyawant S.S. Angiotensin-I converting enzyme (ACE-I) inhibitory and antiproliferative potential of chickpea seed protein hydrolysate. Annals of Plant Sciences. 2018;7(3):2149-2153. DOI: 10.21746/aps.2018.7.3.10

17. Gupta N, Bhagyawant S.S. Enzymatic treatment improves ACE-I inhibiton and antiproliferative potential of chickpea. Vegetos. 2019;32(3):363-369. DOI: 10.1007/s42535-019-00031-6

18. Jisha V.N., Smitha R.B., Pradeep S., Sreedevi S., Unni K.N., Sajith S. et al. Versatility of microbial proteases. Advances in Enzyme Research. 2013;1(3):39-51. DOI: 10.4236/aer.2013.13005

19. Jukanti A.K., Gaur P.M., Gowda C.L.L., Chibbar R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition. 2012;108(1):S11-S26. DOI: 10.1017/S0007114512000797

20. Kaur R., Prasad K. Technological, processing and nutritional aspects of chickpea (Cicer arietinum) – A review. Trends in Food Science and Technology. 2021;109:448-463. DOI: 10.1016/j.tifs.2021.01.044

21. Kaya M., Küçükyumuk Z., Erdal I. Phytase activity, phytic acid, zinc, phosphorus and protein contents in different chickpea genotypes in relation to nitrogen and zinc fertilization. African Journal of Biotechnology. 2009;8(18):4508-4513.

22. Khandelwal S., Udipi S.A., Ghugre P. Polyphenols and tannins in Indian pulses: Effect of soaking, germination andpressure cooking. Food Research International. 2010;43(2):526-530. DOI: 10.1016/j.foodres.2009.09.036

23. Khattab R.Y., Arntfield S.D. Nutritional quality of legume seeds as affected by some physical treatments. 2. Antinutritional factors. Food Science and Technology. 2009;42(6):1113-1118. DOI: 10.1016/j.lwt.2009.02.004

24. Khokhar S., Owusu Apenten R.K. Antinutritional factors in food legumes and effects of processing. In: V.R. Squires (ed.). The Role of Food, Agriculture, Forestry and Fisheries in Human Nutrition. Vol. IV. Oxford: EOLSS Publishers Co Ltd; 2003. p.82-116.

25. Kou X., Gao J., Xue Z., Zhang Z., Wang H., Wang X. Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT – Food Science and Technology. 2013;50(2):591-598. DOI: 10.1016/j.lwt.2012.08.002

26. Li Y.H., Jiang B., Zhang T., Mu W., Liu J. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry. 2008;106(2):444-450. DOI: 10.1016/j.foodchem.2007.04.067

27. Medina-Godoy S., Ambriz-Pérez D.L., Fuentes-Gutiérrez C.I., Germán-Báez L.J., Gutiérrez-Dorado R., Reyes-Moreno C. et al. Angiotensin-converting enzyme inhibitory and antioxidative activities and functional characterization of protein hydrolysates of hard-to-cook chickpeas. Journal of the Science of Food and Agriculture. 2012;92(9):1974-1981. DOI: 10.1002/jsfa.5570

28. Mohan V.R., Tresina P.S., Daffodil E.D. Antinutritional factors in legume seeds: characteristics and determination. In: B. Caballero, P. Finglas, F. Toldrá. Encyclopedia of Food and Health. Waldham, MA: Academic Press; 2016. p.211-220. DOI: 10.1016/B978-0-12-384947-2.00036-2

29. Möller N.P., Scholz-Ahrens K.E., Roos N., Schrezenmeir J. Bioactive peptides and proteins from foods: indication for health effects. European Journal of Nutrition. 2008;47(4):171-182. DOI: 10.1007/s00394-008-0710-2

30. Murphy K.J., Marques-Lopes I., Sánchez-Tainta A. Chapter 7 – Cereals and legumes. In: Sánchez-Villegas A., SánchezTainta A. (eds) The Prevention of Cardiovascular Disease Through the Mediterranean Diet. Oxford: Academic Press; 2018. p.111-132.

31. Muzquiz M., Wood J.A. Antinutritional factors. In: S.S. Yadav, R.J. Redden, W. Chen, B. Sharma (eds). Chickpea Breeding and Management. Wallingford: CAB International; 2007. p.143-166. DOI: 10.1079/9781845932138.006

32. Ortiz-Martinez M., Winkler R., Garcia-Lara S. Preventive and therapeutic potential of peptides from cereals against cancer. Journal of Proteomics. 2014;111:165-183. DOI: 10.1016/j.jprot.2014.03.044

33. Pihlanto-Leppälä A. Bioactive peptides derived from bovine whey proteins: opioid and ACE-inhibitory peptides. Trends in Food Science and Technology. 2000;11(9-10):347-356. DOI: 10.1016/S0924-2244(01)00003-6

34. Pina-Pérez M.C., Ferrús-Pérez M.A. Antimicrobial potential of legume extracts against foodborne pathogens: a review. Trends in Food Science and Technology. 2018;72:114-124. DOI: 10.1016/j.tifs.2017.12.007

35. Rachwa-Rosiak D., Nebesny E., Budryn G. Chickpeas – composition, nutritional value, health benefits, application to bread and snacks: a review. Critical Reviews in Food Science and Nutrition. 2015;55(8):1137-1145. DOI: 10.1080/10408398.2012.687418

36. Rao P.U., Deosthale Y.G. Tannin content of pulses: varietal differences and effects of germination and cooking. Journal of the Science of Food and Agriculture. 1982;33(10):1013-1016. DOI: 10.1002/jsfa.2740331012

37. Rebello C.J., Greenway F.L., Finley J.W. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obesity Reviews. 2014;15(5):392-407. DOI: 10.1111/obr.12144

38. Roy A., Ghosh S., Kundagrami S. Food processing methods towards reduction of antinutritional factors in chickpea. International Journal of Current Microbiology and Applied Sciences. 2019;8(1):424-432. DOI: 10.20546/ijcmas.2019.801.044

39. Rupérez P. Oligosaccharides in raw and processed legumes. European Food Research and Technology. 1998;206:130-133. DOI: 10.1007/s002170050228

40. Sánchez A., Vázquez A. Bioactive peptides: a review. Food Quality and Safety. 2017;1(1):29-46. DOI: 10.1093/fqsafe/fyx006

41. Sánchez-Chino X.M., Martínez C.J., León-Espinosa E.B., Garduño-Siciliano L., Álvarez-González I., Madrigal-Bujaidar E. et al. Protective effect of chickpea protein hydrolysates on colon carcinogenesis associated with a hypercaloric diet. Journal of the American College of Nutrition. 2019;38(5):162-170. DOI: 10.1080/07315724.2018.1487809

42. Savijoki K., Ingmer H., Varmanen P. Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology. 2006;71(4):394-406. DOI: 10.1007/s00253-006-0427-1

43. Schettino R., Pontonio E., Rizzello C.G. Use of fermented hemp, chickpea and milling by-products to improve the nutritional value of semolina pasta. Foods. 2019;8(12):604. DOI: 10.3390/foods8120604

44. Shi W., Hou T., Guo D., He H. Evaluation of hypolipidemic peptide (Val-Phe-Val-Arg-Asn) virtual screened from chickpea peptides by pharmacophore model in high-fat diet-induced obese rat. Journal of Functional Foods. 2019;54:136-145. DOI: 10.1016/j.jff.2019.01.001

45. Shi W., Hou T., Liu W., Guo D., He H. The hypolipidemic effects of peptides prepared from Cicer arietinum in ovariectomized rats and HepG2 cells. Journal of the Science of Food and Agriculture. 2019;99(2):576-586. DOI: 10.1002/jsfa.9218

46. Singh B.P., Vij S., Hati S. Functional significance of bioactive peptides derived from soybean. Peptides. 2014;54:171-179. DOI: 10.1016/j.peptides.2014.01.022

47. Sinha S.K., Amresh K. Condensed tannin: a major anti-nutritional constituent of faba bean (Vicia faba L.). Horticulture International Journal. 2018;2(2):32-33. DOI: 10.15406/hij.2018.02.00022

48. Smid E.J., Hugenholtz J. Functional genomics for food fermentation processes. Annual Review of Food Science and Technology. 2010;1:497-519. DOI: 10.1146/annurev.food.102308.124143

49. Smith V.H., Jimmerson J. Chickpeas (garbanzo beans). Briefing No. 55. Agricultural Marketing Policy Center Briefings. 2005. Available from: https://ampc.montana.edu/documents/briefings/briefing55.pdf [accessed Aug. 17, 2021].

50. Wallace T.C., Murray R., Zelman K.M. The nutritional value and health benefits of chickpeas and hummus. Nutrients. 2016;8(12):766. DOI: 10.3390/nu8120766

51. Wang N., Hatcher D.W., Tyler R.T., Toews R., Gawalko E. Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Research International. 2010;43(2):589-594. DOI: 10.1016/j.foodres.2009.07.012

52. Xu Y., Galanopoulos M., Sismour E., Ren S., Mersha Z., Lynch P. et al. Effect of enzymatic hydrolysis using endo- and exoproteases on secondary structure, functional, and anti oxidant properties of chickpea protein hydrolysates. Journal of Food Measurement and Characterization. 2020;14(1):343-352. DOI: 10.1007/s11694-019-00296-0

53. Yamamoto N., Ejiri M., Mizuno S. Biogenic peptides and their potential use. Current Pharmaceutical Design. 2003;9(16):1345-1355. DOI: 10.2174/1381612033454801

54. Zhang J., Zhang H., Wang L., Guo X.,Wang X., Yao H. Antioxidant activities of the rice endosperm protein hydrolysate: identification of the active peptide. European Food Research and Technology. 2009;229(4):709-719. DOI: 10.1007/s00217-009-1103-3

55. Zhang T., Jiang B., Miao M., Mu W., Li Y. Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates. Food Chemistry. 2012;135(3):904-912. DOI: 10.1016/j.foodchem.2012.05.097

56. Zhang Y., Su D., He J., Dai Z., Riaz A., Ou S. et al. Effects of ciceritol from chickpea on human colonic microflora and the production of short chain fatty acids by in vitro fermentation. Food Science and Technology. 2017;79(3):294-299. DOI: 10.1016/j.lwt.2017.01.040


Review

For citations:


Ahangaran M., Afanasev D.A., Chernukha I.M., Mashentseva N.G., Gharaviri M. Bioactive peptides and antinutrients in chickpea: description and properties (a review). Proceedings on applied botany, genetics and breeding. 2022;183(1):214-223. (In Russ.) https://doi.org/10.30901/2227-8834-2022-1-214-223

Views: 1138


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)