Bioactive peptides and antinutrients in chickpea: description and properties (a review)
https://doi.org/10.30901/2227-8834-2022-1-214-223
Abstract
Legumes are a rich source of many different biologically active substances, such as fiber, proteins, vitamins and minerals. Chickpea (Cicer arietinum L.) is the third most important leguminous plant in the world: it has high nutritional value and is a source of a wide range of bioactive compounds. Bioactive peptides of chickpea seeds have antioxidant, ACE-inhibiting, cholesterollowering, antihypertensive, antimicrobial, antithrombotic, immunomodulatory, and opioid activities as well as the ability to bind minerals. But despite the benefits and high nutritional value, chickpea seeds contain antinutrients that reduce their nutritional and biological advantages. These antinutritional factors include condensed tannins, raffinose, and phytic acid. Research has shown that cooking, pregermination or fermentation can effectively reduce the indigestible content of chickpea seeds. For this purpose, it is recommended to use certain physical, chemical or biological methods: heat treatment, soaking and/or germination, enzymatic hydrolysis, irradiation, etc.
This review article presents the world’s results of research aimed at studying bioactive chickpea peptides derived from chickpea seeds and ways of their formation as well as methods for elimination of antinutritional factors.
About the Authors
M. AhangaranRussian Federation
Mahboobeh Ahangaran, Postgraduate Student
11 Volokolamskoe Highway, Moscow 125080
D. A. Afanasev
Russian Federation
Dmitry A. Afanasev, Postgraduate Student
26 Talalikhina St., Moscow 10 9316
I. M. Chernukha
Russian Federation
Irina M. Chernukha, Dr. Sci. (Engineering), Full Member (Academician) of the RAS, Chief Researcher, Professor
26 Talalikhina St., Moscow 10 9316
N. G. Mashentseva
Russian Federation
Natalya G. Mashentseva, Dr. Sci. (Engineering), Professor of the RAS, Professor
11 Volokolamskoe Highway, Moscow 125080
M. Gharaviri
Russian Federation
Mahmud Gharaviri, Postgraduate Student
11 Volokolamskoe Highway, Moscow 125080
References
1. Agriculture & Agri-Food Canada. Chickpeas: Situation and outlook. Bi-weekly Bulletin. 2006;19(13):1-4.
2. Aluko R.E. Bioactive peptides. In: Functional Foods and Nutraceuticals. Food Science Text Series. New York, NY: Springer; 2012. p.37-61. DOI: 10.1007/978-1-4614-3480-1_3
3. Aluko R.E. Determination of nutritional and bioactive properties of peptides in enzymatic pea, chickpea, and mung bean protein hydrolysates. Journal of AOAC International. 2008;91(4):947-956. DOI: 10.1093/jaoac/91.4.947
4. Belović M.M., Mastilović J.S., Torbica A.L., Tomić J.M., Stanić D.R., Džinić N.R. Potential of bioactive proteins and peptides for prevention and treatment of mass non-communicable diseases. Food and Feed Research. 2011;38(2):51-61.
5. Boyaci Gunduz C.P., Gaglio R., Franciosi E., Settanni L., Erten H. Molecular analysis of the dominant lactic acid bacteria of chickpea liquid starters and doughs and propagation of chickpea sourdoughs with selected Weissella confuse. Food Microbiology. 2020;91:103490. DOI: 10.1016/j.fm.2020.103490
6. Bulbula D.D., Urga K. Study on the effect of traditional processing methods on nutritional composition and antinutritional factors in chickpea (Cicer arietinum L.). CogentFood & Agriculture. 2018;4(1):1422370. DOI: 10.1080/23311932.2017.1422370
7. Chen H., Ma H.R., Gao Y.H., Zhang X., Habasi M., Hu R. et al. Isoflavones extracted from chickpea Cicer arietinum L. sprouts induce mitochondria-dependent apoptosis in human breast cancer cells. Phytotherapy Research. 2015;29(2):2010-2019. DOI: 10.1002/ptr.5241
8. Coda R., Di Cagno R., Gobbetti M., Rizzello C.G. Sourdough lactic acid bacteria: exploration of non-wheat cereal-based fermentation. Food Microbiology. 2014;37:51-58. DOI: 10.1016/j.fm.2013.06.018
9. Curiel J.A., Coda R., Centomani I., Summo C., Gobbetti M., Rizzello C.G. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: the potential of sourdough fermentation. International Journal of Food Microbiology. 2015;196;51-61. DOI: 10.1016/j.ijfoodmicro.2014.11.032
10. De Pasquale I., Pontonio E., Gobbetti M., Rizzello C.G. Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours. International Journal of Food Microbiology. 2020;316;108426. DOI: 10.1016/j.ijfoodmicro.2019.108426
11. Domoney C. Inhibitors of legume seeds. In: P.R. Shewry, R. Casey (eds). Seed Proteins. Dordrecht: Springer; 1999. p.635-655. DOI: 10.1007/978-94-011-4431-5_27
12. FitzGerald R.J., Murray B.A., Walsh D.J. Hypotensive peptides from milk proteins. The Journal of Nutrition. 2004;134(4):980S-988S. DOI: 10.1093/jn/134.4.980S
13. Ghribi A.M., Sila A., Przybylski R., Nedjar-Arroume N., Makhlouf I., Blecker C. et al. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietunum L.) protein concentrate. Journal of functional foods. 2015;12:516-525. DOI: 10.1016/j.jff.2014.12.011
14. Girón-Calle J., Alaiz M., Vioque J. Effect of chickpea protein hydrolysates on cell proliferation and in vitro bioavailability. Food Research International. 2010;43(5):1365-1370. DOI: 10.1016/j.foodres.2010.03.020
15. Gobbetti M., Minervini F., Rizzello C.G. Angiotensin I-converting-enzyme-inhibitory and antimicrobial bio active peptides. International Journal of Dairy Technology. 2004;57(2-3):173-188. DOI: 10.1111/j.1471-0307.2004.00139.x
16. Gupta N., Bhagyawant S.S. Angiotensin-I converting enzyme (ACE-I) inhibitory and antiproliferative potential of chickpea seed protein hydrolysate. Annals of Plant Sciences. 2018;7(3):2149-2153. DOI: 10.21746/aps.2018.7.3.10
17. Gupta N, Bhagyawant S.S. Enzymatic treatment improves ACE-I inhibiton and antiproliferative potential of chickpea. Vegetos. 2019;32(3):363-369. DOI: 10.1007/s42535-019-00031-6
18. Jisha V.N., Smitha R.B., Pradeep S., Sreedevi S., Unni K.N., Sajith S. et al. Versatility of microbial proteases. Advances in Enzyme Research. 2013;1(3):39-51. DOI: 10.4236/aer.2013.13005
19. Jukanti A.K., Gaur P.M., Gowda C.L.L., Chibbar R.N. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition. 2012;108(1):S11-S26. DOI: 10.1017/S0007114512000797
20. Kaur R., Prasad K. Technological, processing and nutritional aspects of chickpea (Cicer arietinum) – A review. Trends in Food Science and Technology. 2021;109:448-463. DOI: 10.1016/j.tifs.2021.01.044
21. Kaya M., Küçükyumuk Z., Erdal I. Phytase activity, phytic acid, zinc, phosphorus and protein contents in different chickpea genotypes in relation to nitrogen and zinc fertilization. African Journal of Biotechnology. 2009;8(18):4508-4513.
22. Khandelwal S., Udipi S.A., Ghugre P. Polyphenols and tannins in Indian pulses: Effect of soaking, germination andpressure cooking. Food Research International. 2010;43(2):526-530. DOI: 10.1016/j.foodres.2009.09.036
23. Khattab R.Y., Arntfield S.D. Nutritional quality of legume seeds as affected by some physical treatments. 2. Antinutritional factors. Food Science and Technology. 2009;42(6):1113-1118. DOI: 10.1016/j.lwt.2009.02.004
24. Khokhar S., Owusu Apenten R.K. Antinutritional factors in food legumes and effects of processing. In: V.R. Squires (ed.). The Role of Food, Agriculture, Forestry and Fisheries in Human Nutrition. Vol. IV. Oxford: EOLSS Publishers Co Ltd; 2003. p.82-116.
25. Kou X., Gao J., Xue Z., Zhang Z., Wang H., Wang X. Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT – Food Science and Technology. 2013;50(2):591-598. DOI: 10.1016/j.lwt.2012.08.002
26. Li Y.H., Jiang B., Zhang T., Mu W., Liu J. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry. 2008;106(2):444-450. DOI: 10.1016/j.foodchem.2007.04.067
27. Medina-Godoy S., Ambriz-Pérez D.L., Fuentes-Gutiérrez C.I., Germán-Báez L.J., Gutiérrez-Dorado R., Reyes-Moreno C. et al. Angiotensin-converting enzyme inhibitory and antioxidative activities and functional characterization of protein hydrolysates of hard-to-cook chickpeas. Journal of the Science of Food and Agriculture. 2012;92(9):1974-1981. DOI: 10.1002/jsfa.5570
28. Mohan V.R., Tresina P.S., Daffodil E.D. Antinutritional factors in legume seeds: characteristics and determination. In: B. Caballero, P. Finglas, F. Toldrá. Encyclopedia of Food and Health. Waldham, MA: Academic Press; 2016. p.211-220. DOI: 10.1016/B978-0-12-384947-2.00036-2
29. Möller N.P., Scholz-Ahrens K.E., Roos N., Schrezenmeir J. Bioactive peptides and proteins from foods: indication for health effects. European Journal of Nutrition. 2008;47(4):171-182. DOI: 10.1007/s00394-008-0710-2
30. Murphy K.J., Marques-Lopes I., Sánchez-Tainta A. Chapter 7 – Cereals and legumes. In: Sánchez-Villegas A., SánchezTainta A. (eds) The Prevention of Cardiovascular Disease Through the Mediterranean Diet. Oxford: Academic Press; 2018. p.111-132.
31. Muzquiz M., Wood J.A. Antinutritional factors. In: S.S. Yadav, R.J. Redden, W. Chen, B. Sharma (eds). Chickpea Breeding and Management. Wallingford: CAB International; 2007. p.143-166. DOI: 10.1079/9781845932138.006
32. Ortiz-Martinez M., Winkler R., Garcia-Lara S. Preventive and therapeutic potential of peptides from cereals against cancer. Journal of Proteomics. 2014;111:165-183. DOI: 10.1016/j.jprot.2014.03.044
33. Pihlanto-Leppälä A. Bioactive peptides derived from bovine whey proteins: opioid and ACE-inhibitory peptides. Trends in Food Science and Technology. 2000;11(9-10):347-356. DOI: 10.1016/S0924-2244(01)00003-6
34. Pina-Pérez M.C., Ferrús-Pérez M.A. Antimicrobial potential of legume extracts against foodborne pathogens: a review. Trends in Food Science and Technology. 2018;72:114-124. DOI: 10.1016/j.tifs.2017.12.007
35. Rachwa-Rosiak D., Nebesny E., Budryn G. Chickpeas – composition, nutritional value, health benefits, application to bread and snacks: a review. Critical Reviews in Food Science and Nutrition. 2015;55(8):1137-1145. DOI: 10.1080/10408398.2012.687418
36. Rao P.U., Deosthale Y.G. Tannin content of pulses: varietal differences and effects of germination and cooking. Journal of the Science of Food and Agriculture. 1982;33(10):1013-1016. DOI: 10.1002/jsfa.2740331012
37. Rebello C.J., Greenway F.L., Finley J.W. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obesity Reviews. 2014;15(5):392-407. DOI: 10.1111/obr.12144
38. Roy A., Ghosh S., Kundagrami S. Food processing methods towards reduction of antinutritional factors in chickpea. International Journal of Current Microbiology and Applied Sciences. 2019;8(1):424-432. DOI: 10.20546/ijcmas.2019.801.044
39. Rupérez P. Oligosaccharides in raw and processed legumes. European Food Research and Technology. 1998;206:130-133. DOI: 10.1007/s002170050228
40. Sánchez A., Vázquez A. Bioactive peptides: a review. Food Quality and Safety. 2017;1(1):29-46. DOI: 10.1093/fqsafe/fyx006
41. Sánchez-Chino X.M., Martínez C.J., León-Espinosa E.B., Garduño-Siciliano L., Álvarez-González I., Madrigal-Bujaidar E. et al. Protective effect of chickpea protein hydrolysates on colon carcinogenesis associated with a hypercaloric diet. Journal of the American College of Nutrition. 2019;38(5):162-170. DOI: 10.1080/07315724.2018.1487809
42. Savijoki K., Ingmer H., Varmanen P. Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology. 2006;71(4):394-406. DOI: 10.1007/s00253-006-0427-1
43. Schettino R., Pontonio E., Rizzello C.G. Use of fermented hemp, chickpea and milling by-products to improve the nutritional value of semolina pasta. Foods. 2019;8(12):604. DOI: 10.3390/foods8120604
44. Shi W., Hou T., Guo D., He H. Evaluation of hypolipidemic peptide (Val-Phe-Val-Arg-Asn) virtual screened from chickpea peptides by pharmacophore model in high-fat diet-induced obese rat. Journal of Functional Foods. 2019;54:136-145. DOI: 10.1016/j.jff.2019.01.001
45. Shi W., Hou T., Liu W., Guo D., He H. The hypolipidemic effects of peptides prepared from Cicer arietinum in ovariectomized rats and HepG2 cells. Journal of the Science of Food and Agriculture. 2019;99(2):576-586. DOI: 10.1002/jsfa.9218
46. Singh B.P., Vij S., Hati S. Functional significance of bioactive peptides derived from soybean. Peptides. 2014;54:171-179. DOI: 10.1016/j.peptides.2014.01.022
47. Sinha S.K., Amresh K. Condensed tannin: a major anti-nutritional constituent of faba bean (Vicia faba L.). Horticulture International Journal. 2018;2(2):32-33. DOI: 10.15406/hij.2018.02.00022
48. Smid E.J., Hugenholtz J. Functional genomics for food fermentation processes. Annual Review of Food Science and Technology. 2010;1:497-519. DOI: 10.1146/annurev.food.102308.124143
49. Smith V.H., Jimmerson J. Chickpeas (garbanzo beans). Briefing No. 55. Agricultural Marketing Policy Center Briefings. 2005. Available from: https://ampc.montana.edu/documents/briefings/briefing55.pdf [accessed Aug. 17, 2021].
50. Wallace T.C., Murray R., Zelman K.M. The nutritional value and health benefits of chickpeas and hummus. Nutrients. 2016;8(12):766. DOI: 10.3390/nu8120766
51. Wang N., Hatcher D.W., Tyler R.T., Toews R., Gawalko E. Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Research International. 2010;43(2):589-594. DOI: 10.1016/j.foodres.2009.07.012
52. Xu Y., Galanopoulos M., Sismour E., Ren S., Mersha Z., Lynch P. et al. Effect of enzymatic hydrolysis using endo- and exoproteases on secondary structure, functional, and anti oxidant properties of chickpea protein hydrolysates. Journal of Food Measurement and Characterization. 2020;14(1):343-352. DOI: 10.1007/s11694-019-00296-0
53. Yamamoto N., Ejiri M., Mizuno S. Biogenic peptides and their potential use. Current Pharmaceutical Design. 2003;9(16):1345-1355. DOI: 10.2174/1381612033454801
54. Zhang J., Zhang H., Wang L., Guo X.,Wang X., Yao H. Antioxidant activities of the rice endosperm protein hydrolysate: identification of the active peptide. European Food Research and Technology. 2009;229(4):709-719. DOI: 10.1007/s00217-009-1103-3
55. Zhang T., Jiang B., Miao M., Mu W., Li Y. Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates. Food Chemistry. 2012;135(3):904-912. DOI: 10.1016/j.foodchem.2012.05.097
56. Zhang Y., Su D., He J., Dai Z., Riaz A., Ou S. et al. Effects of ciceritol from chickpea on human colonic microflora and the production of short chain fatty acids by in vitro fermentation. Food Science and Technology. 2017;79(3):294-299. DOI: 10.1016/j.lwt.2017.01.040
Review
For citations:
Ahangaran M., Afanasev D.A., Chernukha I.M., Mashentseva N.G., Gharaviri M. Bioactive peptides and antinutrients in chickpea: description and properties (a review). Proceedings on applied botany, genetics and breeding. 2022;183(1):214-223. (In Russ.) https://doi.org/10.30901/2227-8834-2022-1-214-223