The influence of combinations of alien translocations on in vitro androgenesis in spring common wheat (Triticum aestivum L.)
https://doi.org/10.30901/2227-8834-2022-1-127-134
Abstract
Background. The basic approach to the production of new common wheat genotypes involving introgressive hybridization entails a long-term process. Doubled haploid production could accelerate it. However, this method is not widely used in breeding programs due to its main limitation: the genotype dependence. Due to genetic differences between wheat and related species, it was assumed that alien genetic materials are different in their capacity to affect androgenesis. The effect of alien translocations on androgenesis has been shown earlier. The aim of this study was to develop a set of DH wheat lines containing a wheat-alien translocation in the genome and study the effect of alien translocations on androgenesis of anther culture in such lines.
Materials and methods. The plant material included: the spring wheat cultivar ‘Novosibirskaya 16’, line Velut 991 carrying wheat-alien translocations 1RS.1BL from rye and 5BS.5BL-5SL from Aegilops speltoides Tausch, and four hybrid F3 generation lines (10-7, 14-8, 15-8, 15-12) from their crossing, differing in the content of alien translocations.
Results. It was shown that parameters of androgenesis such as the number of embryo-like structures per 100 anthers, the number of albino regenerants per 100 anthers, and the number of green regenerants per 100 anthers varied depending on the line. The best -responding lines Velut 991, 10-7 and 14-8 are characterized by the presence of a 1RS.1BL wheat-rye translocation chromosome. Regeneration frequency of green plants was recorded to be 8,6%, 3,6% and 10,1% respectively. The values of the parameters for lines 15-12 (carrying 5BS.5BL-5SL translocation) and 15-8 (without translocations) did not differ significantly.
Conclusion. Therefore, it can be concluded that the presence of the introgressive fragment of chromosome 5S did not affect the efficiency of androgenesis and the short shoulder of chromosome 1R carries genes that stimulated androgenesis in anther culture.
About the Authors
E. M. TimonovaRussian Federation
Ekaterina M. Timonova, Cand. Sci. (Biology), Researcher
10 Lavrentyeva Ave., Novosibirsk 630090
I. G. Adonina
Russian Federation
Irina G. Adonina, Cand. Sci. (Biology), Researcher
10 Lavrentyeva Ave., Novosibirsk 630090
E. A. Salina
Russian Federation
Elena A. Salina, Dr. Sci. (Biology), Professor, Head of a Laboratory, Head of a Department
10 Lavrentyeva Ave., Novosibirsk 630090
References
1. Adonina I. G., Timonova E.M., Salina E.A. Introgressive hybridization of common wheat: results and prospects. Russian Journal of Genetics. 2021;57(4):390-407. DOI: 10.1134/s1022795421030029
2. Agache S., Bachelier B., de Buyser J., Henry Y., Snape J. Genetic analysis of anther culture response in wheat using aneuploid, chromosome substitution and translocation lines. Theoretical and Applied Genetics. 1989;77(1):7-11. DOI: 10.1007/bf00292308
3. Andersen S.B., Due I.K., Olesen A. The response of anther culture in a genetically wide material of winter wheat (Triticum aestivum L.). Plant Breeding. 1987;99(3):181-186. DOI: 10.1111/j.1439-0523.1987.tb01170.x
4. Castillo A.M., Cistué L., Valles M.P., Soriano Castán M. Chromosome doubling in monocots. In: A. Touraev, B.P. Forster, S.M. Jain (eds). Advances in Haploid Production in Higher Plants. Dordrecht: Springer; 2005. p.329-340. DOI: 10.1007/978-1-4020-8854-4_27
5. Chu C.C. The N6 medium and its application to anther culture of cereal crops. In: Proceedings of Symposium on Plant Tissue Culture, 25–30 May 1978. Peking: Science Press; 1978. p.43-50.
6. Dwivedi S.L., Britt A.B., Tripathi L., Sharma S., Upadhyaya H.D., Ortiz R. Haploids: constraints and opportunities in plant breeding. Biotechnology Advances. 2015;33(6 Pt 1):812-829. DOI: 10.1016/j.biotechadv.2015.07.001
7. Gamborg O.L., Miller R.A., Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research. 1968;50(1):151-158. DOI: 10.1016/0014-4827(68)90403-5
8. González J.M., Muñiz L.M., Jouve N. Mapping of QTLs for androgenetic response based on a molecular genetic map of ×Triticosecale Wittmack. Genome. 2005;48(6):999-1009. DOI: 10.1139/g05-064
9. Grewal S., Guwela V., Newell C., Yang C.Y., Ashling S., Scholefield D. et al. Generation of doubled haploid wheat-Triticum urartu introgression lines and their characterisation using chromosome-specific KASP markers. Frontiers in Plant Science. 2021;12:643636. DOI: 10.3389/fpls.2021.643636
10. Jacquier N.M.A. Gilles L.M., Pyott D.E., Martinant J.P., Rogowsky P.M., Widiez T. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Plants. 2020;6(6):610-619. DOI: 10.1038/s41477-020-0664-9
11. Kalinowska K., Chamas S., Unkel K., Demidov D., Lermontova I., Dresselhaus T. et al. State-of-the-art and novel developments of in vivo haploid technologies. Theoretical and Applied Genetics. 2018;132(3):593-605. DOI: 10.1007/s00122-018-3261-9
12. King J., Newell C., Grewal S., Hubbart-Edwards S., Yang C.Y., Scholefield D. et al. Development of stable homozygous wheat/Amblyopyrum muticum (Aegilops mutica) introgression lines and their cytogenetic and molecular characterization. Frontiers in Plant Science. 2019;10:34. DOI: 10.3389/fpls.2019.00034
13. Kishii M. An update of recent use of Aegilops species in wheat breeding. Frontiers in Plant Science. 2019;10:585. DOI: 10.3389/fpls.2019.00585
14. Kishii M., Singh S. Haploid production technology: fasten wheat breeding to meet future food security. In: S. Gosal, S. Wani (eds). Accelerated Plant Breeding. Vol. 1. Cham: Springer; 2020. p.139-165. DOI: 10.1007/978-3-030-41866-3_6
15. Lantos C., Pauk J. Factors influencing the efficiency of wheat anther culture. Acta Biologica Cracoviensia. Series Botanica. 2020;62(2):7-16. DOI: 10.24425/abcsb.2020.131671
16. Lantos C., Weyen J., Orsini J.M., Gnad H., Schlieter B., Lein V. et al. Efficient application of in vitro anther culture for different European winter wheat (Triticum aestivum L.) breeding programmes. Plant Breeding. 2013;132(2):149-154. DOI: 10.1111/pbr.12032
17. Lazaridou T., Pankou C., Xynias I., Roupakias D. Effect of D genome on wheat anther culture response after cold and mannitol pretreatment. Acta Biologica Cracoviensia. Series Botanica. 2016;58(1):95-102. DOI: 10.1515/abcsb2016-0006
18. Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum. 1962;15(3):473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x
19. Nemeth C., Yang C.Y., Kasprzak P., Hubbart S., Scholefield D., Mehra S. et al. Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement. Genome. 2015;58(2):71-79. DOI: 10.1139/gen-2015-0002
20. Nielsen N.H., Andersen S.U., Stougaard J., Jensen A., Backes G., Jahoor A. Chromosomal regions associated with the in vitro culture response of wheat (Triticum aestivum L.) microspores. Plant Breeding. 2015;134(3):255-263. DOI: 10.1111/pbr.12257
21. Pauk J., Mihaly R., Puolimatka M. Protocol for wheat (Triticum aestivum L.) anther culture. In: M. Maluszynski, K.J. Kasha, B.P. Forster, I. Szarejko (eds). Doubled Haploid Production in Crop Plants. Dordrecht: Springer; 2003. p.59-64. DOI: 10.1007/978-94-017-1293-4_10
22. Pershina L., Trubacheeva N., Badaeva E., Belan I., Rosseeva L. Study of androgenic plant families of alloplasmic introgression lines (H. vulgare) – T. aestivum and the use of sister DH lines in breeding. Plants. 2020;9(6):764-816. DOI: 10.3390/plants9060764
23. Pershina L.A., Osadchaya T.S., Badaeva E.D., Belan I.A., Rosseeva L.P. Androgenesis in anther cultures of cultivars and a promising form of spring common wheat of West Siberia differing in the presence or absence of wheat-alien translocations. Russian Journal of Genetics: Applied Research. 2013;3(4):246-253. DOI: 10.1134/s2079059713040096
24. Rubtsova M., Gnad H., Melzer M., Weyen J., Gils M. The auxins centrophenoxine and 2,4-D differ in their effects on nondirectly induced chromosome doubling in anther culture of wheat (T. aestivum L.). Plant Biotechnology Reports. 2013;7(3):247-255. DOI: 10.1007/s11816-012-0256-x
25. Sibikeeva Y.E., Sibikeev S.N., Krupnov V.A. The effect of Lr19-translocation on in vitro androgenesis and inheritance of leaf-rust resistance in DH3 lines and F2 hybrids of common wheat. Russian Journal of Genetics. 2004;40(9):1003-1006. DOI: 10.1023/b:ruge.0000041379.30508.39
26. Singh A.K., Zhang P., Dong C., Li J., Trethowan R., Sharp P. Molecular cytogenetic characterization of stem rust and stripe rust resistance in wheat–Thinopyrum bessarabicum–derived doubled haploid lines. Molecular Breeding. 2019;39(9):125. DOI: 10.1007/s11032-019-1034-z
27. Torp A.M., Hansen A.L., Andersen S.B. Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica. 2001;119(3):377-387. DOI: 10.1023/A:1017554129904
28. Weigt D, Kiel A., Nawracala J., Tomkowiak A., KurasiakPopowska D., Siatkowski I. et al. Obtaining doubled haploid lines of the Lr19 gene using anther cultures of winter wheat genotypes. BioTechnologia. 2016;97(4):285-293. DOI: 10.5114/bta.2016.64545
Review
For citations:
Timonova E.M., Adonina I.G., Salina E.A. The influence of combinations of alien translocations on in vitro androgenesis in spring common wheat (Triticum aestivum L.). Proceedings on applied botany, genetics and breeding. 2022;183(1):127-134. (In Russ.) https://doi.org/10.30901/2227-8834-2022-1-127-134