Preview

Proceedings on applied botany, genetics and breeding

Advanced search

Assessment of oat varieties with different levels of breeding refinement from the Vavilov Institute’s collection applying the method of metabolomic profiling

https://doi.org/10.30901/2227-8834-2022-1-104-117

Abstract

Metabolomic profiling data obtained through gas chromatography coupled with mass spectrometry are presented. Thirty oat accessions from the collection of the N.I. Vavilov Institute of Plant Genetic resources (VIR) served as the material for the research. Those accessions of Russian and French origin showed different degrees of breeding refinement: from local landraces (the early 1920s) and primitive cultigens (1920–1930s) to modern improved cultivars. Twenty-seven hulled and three naked oat varieties were selected for the study.
The main objective of the work was to identify differences among common oat varieties with different degrees of breeding refinement at the level of metabolomic profiles. The resulting data reflected the metabolic state of oat genotypes with different ecogeographic backgrounds. They were compared to assess the content of main metabolite groups important for the formation of the crop’s stress resistance traits as well as nutritional, medicinal and dietary properties of oat grain products. The most informative indicators were identified (fucosterol, chiro-inositol, xylitol; undecylic, threonic, glutamic, ribonic and phosphoric acids; sorbose, fructose, glucose-3-phosphate, and myo-inositol), which helped to make statistically significant differentiation among oat accessions of different origin with various degrees of breeding refinement. Comparing metabolomic profiles of different oat variety groups (landraces, primitive cultigens, and modern cultivars, developed by Russian and French breeders) mirrored distinctive features of the trends followed by different plant breeding schools.
This study showed that breeding efforts to improve biochemical indicators in oat grain would require the use of the genetic diversity found in landraces and primitive cultigens collected or developed in the 1920–1930s. This diversity is still preserved and maintained in the global germplasm collection at VIR.

About the Authors

I. G. Loskutov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources; St. Petersburg State University, St. Petersburg
Russian Federation

Igor G. Loskutov, Dr. Sci. (Biology), Chief Researcher, Head of a Department

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000

7–9 Universitetskaya Emb.., St. Petersburg 199034



T. V. Shelenga
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Tatyana V. Shelenga, Cand. Sci. (Biology), Leading Researcher

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



A. V. Konarev
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Alexey V. Konarev, Dr. Sci. (Biology), Chief Researcher, Head of a Department

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



V. I. Khoreva
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Valentina I. Khoreva, Cand. Sci. (Biology), Leading Researcher

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



Yu. A. Kerv
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Yulia A. Kerv, Cand. Sci. (Biology), Researcher

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



E. V. Blinova
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Elena V. Blinova, Cand. Sci. (Agriculture), Senior Researcher

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



A. A. Gnutikov
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Alexander A. Gnutikov, Researcher

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



A. V. Rodionov
St. Petersburg State University, St. Petersburg; Komarov Botanical Institute of the Russian Academy of Sciences
Russian Federation

Alexander V. Rodionov, Dr. Sci. (Biology), Chief Researcher, Head of a Laboratory

2 Professorа Popovа Street, St. Petersburg 197376

7–9 Universitetskaya Emb.., St. Petersburg 199034



L. L. Malyshev
N.I. Vavilov All-Russian Institute of Plant Genetic Resources
Russian Federation

Leonid L. Malyshev, Cand. Sci. (Agriculture), Leading Researcher

42, 44 Bolshaya Morskaya Street, St. Petersburg 190000



References

1. Balmer D., Flors V., Glauser G., Mauch-Mani B. Metabolomics of cereals under biotic stress: current knowledge and techniques. Frontiers in Plant Science. 2013;4:82. DOI: 10.3389/fpls.2013.00082

2. Bazilevskaya N.A. Breeding for chemical composition (Selektsiya na khimicheskiy sostav). In: N.I. Vavilov (ed.). Theoretical principles of plant breeding. Vol. 1. General plant production (Teoreticheskiye osnovy selektsii. T. 1. Obshcheye rasteniyevodstvo). Moscow; Leningrad: GIZ; 1935. p.1017-1043. [in Russian]

3. Björck I., Östman E., Kristensen M., Anson N.M., Price R.K., Haenen G.R.M.M. et al. Cereal grains for nutrition and health benefits: overview of results from in vitro, animal and human studies in the HEALTHGRAIN project. Trends in Food Science and Technology. 2012;25(2):87-100. DOI: 10.1016/j.tifs.2011.11.005

4. Boczkowska M., Łapiń ski B., Kordulasińska I., Dostatny D.F., Czembor J.H. Promoting the use of common oat genetic resources through diversity analysis and core collection construction. PLoS ONE. 2016;11(12):e0167855. DOI: 10.1371/journal.pone.0167855

5. Boczkowska M., Zebrowski J., Nowosielski J., Kor du la sinska I., Nowosielska D., Podyma W. Envi ronmentallyrelated genotypic, phenotypic and metabolic diversity of oat (Avena sativa L.) landraces based on 67 Polish accessions. Genetic Resources and Crop Evolution. 2017;64(8):1829-1840. DOI: 10.1007/s10722-017-0555-8

6. Bolton M.D. Primary metabolism and plant defense – fuel for the fire. Molecular Plant–Microbe Interactions. 2009;22(5):487-497. DOI: 10.1094/MPMI-22-5-0487

7. Bushnell W.R., Perkins-Veazie P., Russo V.M., Collins J., Seeland T.M. Effects of deoxynivalenol on content of chloroplast pigments in barley leaf tissues. Phytopathology. 2009;100(1):33-41. DOI: 10.1094/phyto100-1-0033

8. Carreno-Quintero N., B ouwmeester H.J., Keurentjes J.J. Genetic analysis of metabolome–phenotype interactions: from model to crop species. Trends in Genetics. 2013;29(1):41-50. DOI: 10.1016/j.tig.2012.09.006

9. Deng W.W., Ashihara H. Profiles of purine metabolism in leaves and roots of Camellia sinensis seedlings. Plant and Cell Physiology. 2010;51(12):2105-2118. DOI: 10.1093/pcp/pcq175

10. Fernie A.R., Schauer N. Metabolomics-assisted breeding: a viable option for crop improvement? Trends in Genetics. 2009;25(1):39-48. DOI: 10.1016/j.tig.2008.10.010

11. Fu Y.B., Peterson G.W., Scoles G., Rossnagel B., Schoen D.J., Richards K.W. Allelic diversity changes in 96 Canadian oat cultivars released from 1886 to 2001. Crop Science. 2003;43(6):1989-1995. DOI: 10.2135/cropsci2003.1989

12. Gu J., Jing L., Ma X., Zhang Z., Guo Q., Li Y. GC–TOF-MS-based serum metabolomic investigations of naked oat bran supplementation in high-fat-diet-induced dyslipidemic rats. The Journal of Nutritional Biochemistry. 2015;26(12):1509-1519. DOI: 10.1016/j.jnutbio.2015.07.019

13. Harrigan G.G., Brackett D.J., Boros L.G. Medicinal chemistry, metabolic profiling and drug target discovery: a role for metabolic profiling in reverse pharmacology and chemical genetics. Mini-Reviews in Medicinal Chemistry. 2005;5(1):13-20. DOI: 10.2174/1389557053402800

14. He X., Bjørnstad Å. Diversity of North European oat analyzed by SSR, AFLP and DArT markers. Theoretical and Applied Genetics. 2012;125(1):57-70. DOI: 10.1007/s00122-012-1816-8

15. Hollywood K., Brison D.R., Goodacre R. Metabolomics: current technologies and future trends. Proteomics. 2006;6(17):4716-4723. DOI: 10.1002/pmic.200600106

16. Hong J., Yang L., Zhang D., Shi J. Plant metabolomics: an indispensable system biology tool for plant science. International Journal of Molecular Sciences. 2016;17(6):767. DOI: 10.3390/ijms17060767

17. Horeva V.I., Shelenga T.V., Blinova E.V., Konarev A.V., Loskutov I.G. Catalogue of the VIR global collection. Issue 876. Oats: biochemical characteristics of the accessions. St Petersburg: VIR; 2018. [in Russian]

18. Ivanov N.N. Biochemical principles of plant breeding (Biokhimicheskiye osnovy selektsii rasteniy). In: N.I. Vavilov (ed.). Theoretical principles of plant breeding. Vol. 1. General plant production (Teoreticheskiye osnovy selektsii. T. 1. Obshcheye rasteniyevodstvo). Moscow; Leningrad: GIZ; 1935. p.991-1016. [in Russian]

19. Jonas E, de Koning D.J. Does genomic selection have a future in plant breeding? Trends in Biotechnology. 2013;31(9):497-504. DOI: 10.1016/j.tibtech.2013.06.003

20. Khakimov B., Bak S., Engelsen S.B. High-throughput cereal metabolomics: current analytical technologies, challenges and perspectives. Journal of Cereal Science. 2014;59(3):393-418. DOI: 10.1016/j.jcs.2013.10.002

21. Kokubo Y., Nishizaka M., Ube N., Yabuta Y., Tebayashi S., Ueno K et al. Distribution of the tryptophan pathwayderived defensive secondary metabolites gramine and benzoxazinones in Poaceae. Bioscience, Biotechnology, and Biochemystry. 2017;81(3):431-440. DOI: 10.1080/09168451.2016.1256758

22. Konarev A.V., Horeva V.I. Biochemical research into plant genetic resources at VIR. (Biokhimicheskiye issledovaniya geneticheskikh resursov rasteniy v VIRe). St. Petersburg: VIR; 2000. [in Russian]

23. Konarev A.V., Loskutov I.G., Shelenga T.V., Horeva V.I., Konarev Al.V. Plant genetic resources as an inexhaustible source of healthy food products. Agrarian Russia. 2019;(2):38-48. [in Russian] DOI: 10.30906/1999-5636-2019-2-38-48

24. Konarev A.V., Shelenga T.V., Perchuk I.N., Blinova E.V., Loskutov I.G. Characteristic of oat diversity (genus Avena L.) from the collection of N.I. Vavilov AllRussia Research Institute of Plants – an initial material for oat Fusarium resistance selection. Agrarian Russia. 2015;(5):2-10. [in Russian]

25. Langridge P., Fleury D. Making the most of ‘omics’ for crop breeding. Trends in Biotechnology. 2011;29(1):33-40. DOI: 10.1016/j.tibtech.2010.09.006

26. Leišová L., Kučera L., Dotla čil L. Genetic resources of barley and oat characterised by microsatellites. Czech Journal of Genetics and Plant Breeding. 2007;43:97-104. DOI: 10.17221/2070-CJGPB

27. Leonova S.L., Gnutikov A.A, Loskutov I.G., Blinova E.V., Gustafsson K.E., Olsson O. Diversity of avenanthramide content in wild and cultivated oats. Proceedings on Applied Botany, Genetics and Breeding. 2020;181(1):30-47. [in Russi an] DOI: 10.30901/2227-8834-2020-1-30-47

28. Leonova S.L., Shelenga T.V., Hamberg M., Konarev A.A, Loskutov I.G., Carlsson A.S. Analysis of oil composition in cultivars and wild species of oat (Avena sp.). Journal of Agricultural and Food Chemistry. 2008;56(17):7983-7991. DOI: 10.1021/jf800761c

29. Lokhov P.G., Archakov A.I. Mass spectrometry methods in metabolomics. Biomeditsinskaya khimiya = Biomedical Chemistry. 2008;54(5):497-511. [in Russian]

30. Loskutov I.G. Oat (Avena L.). Distribution, systematics, evolution, and breeding value (Oves (Avena L.). Rasprostraneniye, sistematika, evolyutsiya i selekstionnaya tsennost). St Petersburg: VIR; 2007. [in Russian]

31. Loskutov I.G., Kovaleva O.N., Blinova E.V. Guidelines for the study and conservation of the global collection of barley and oats (Metodicheskiye ukazaniya po izucheniyu i sokhraneniyu mirovoy kollektsii yachmenya i ovsa). St. Petersburg: VIR; 2012. [in Russian]

32. Loskutov I.G., Rines H.W. Avena. In: C. Kole (ed.). Wild Crop Relatives: Genomic and Breeding Resources: Cereals. Heidelberg; Berlin: Springer; 2011. p.109-184. DOI: 10.1007/978-3-642-14228-4_3

33. Loskutov I.G., Shelenga T.V., Konarev A.V., Horeva V.I., Shavarda A.L., Blinova E.V. et al. Biochemical aspects of interactions between fungi and plants: a case study of Fusarium in oats. (Biokhimicheskiye aspekty vzaimodeystviya gribov i rasteniy: na primere fuzarioza ovsa). Agricultural Biology. 2019;54(3):575-588. [in Russian] DOI:10.15389/agro biology.2019.3.575rus

34. Loskutov I.G., Shelenga T.V., Konarev A.V., Shavarda A.L., Blinova E.V., Dzubenko N.I. The metabolomic approach to the comparative analysis of wild and cultivated species of oats (Avena L.). Russian Journal of Genetics: Applied Research. 2017;7(5):501-508. DOI: 10.1134/s2079059717050136

35. Loskutov I.G., Shelenga T.V, Konarev A.V., Vargach Yu.I., Porokhovinova E.A., Blinova E.V. et al. Modern approach of structuring the variety diversity of the naked and covered forms of cultural oats (Avena sativa L.). Ecological Genetics. 2020;18(1):27-41. [in Russian]

36. Loskutov I.G., Shelenga T.V., Rodionov A.V., Khoreva V.I., Blinova E.V., Konarev A.V. et al. Application of metabolomic analysis in exploration of plant genetic resources. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 2019;73(6):494-501. DOI: 10.2478/prolas-2019-0076

37. Montilla-Bascón G., Sánchez- Martín J., Rispail N., Rubiales D., Mur L., Langdon T. et al. Genetic diversity and population structure among oat cultivars and landraces. Plant Molecular Biology Reporter. 2013;31(6):1305-1314. DOI: 10.1007/s11105-013-0598-8

38. Perchuk I., Shelenga T., Gurkina M., Miroshnichenko E., Burlyaeva M. Composition of primary and secondary metabolite compounds in seeds and pods of asparagus bean (Vigna unguiculata (L.) Walp.) from China. Molecules. 2020;25(17):3778. DOI: 10.3390/molecules25173778

39. Perkowski J., Stuper K., Buú ko M., Góral T., Kaczmarek A., Jeleñ H. Differences in metabolomic profiles of the naturally contaminated grain of barley, oats and rye. Journal of Cereal Science. 2012;56(3):544-551. DOI: 10.1016/j.jcs.2012.07.012

40. Puzanskiy R., Tarakhovskaya E.R., Shavarda A., Shishova M. Metabolomic and physiological changes of Chlamydomonas reinhardtii (Chlorophyceae, Chlorophyta) during batch culture development. Journal of Applied Phycology. 2018;30(2):803-818. DOI: 10.1007/s10811-017-1326-9

41. Sánchez-Martín J., Heald J., Kingston-Smith A., Winters A., Rubiales D., Sanz M. et al. A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant, Cell and Environment. 2015;38(7):1434-1452. DOI: 10.1111/pce.12501

42. Schauer N., Fernie A.R. Plant metabolomics: towards biological function and mechanism. Trends in Plant Science. 2006;11(10):508-516. DOI:10.1016/j.tplants.2006.08.007

43. Shelenga T.V., Konarev A.V., Dzyubenko N.I., Malyshev L.L., Takai T. Characteristics of meadow fescue accessions from the collection of the N.I. Vavilov All-Russian Research Institute of Plant Industry, containing symbiotic endophyte fungi of the genus Neotyphodium (Izucheniye obraztsov ovsyanitsy lugovoy iz kollektsii VNII rasteniyevodstva im. N.I. Vavilova, soderzhashchikh endofitnye griby roda Neotyphodium). Agrarian Russia. 2005;(2):36-42. [in Russian]

44. Shulaev V. Metabolomics technology and bioinformatics. Briefings in Bioinformatics. 2006;7(2):128-139. DOI: 10.1093/bib/bbl012

45. Shulaev V., Cortes D., Miller G., Mittler R. Metabolomics for plant stress response. Physiologia Рlantarum. 2008;132(2):199-208. DOI: 10.1111/j.1399-3054.2007.01025.x

46. Shtark O.Y., Puzanskiy R.K., Avdeeva G.S., Yurkov A.P., Smolikova G.N., Yemelyanov V.V. et al. Metabolic alterations in pea leaves during arbuscular mycorrhiza development. PeerJ. 2019;7:e7495. DOI: 10.7717/peerj.7495

47. Sitkin S.I., Tkachenko E.I., Vakhitov T.Y., Oreshko L.S., Zhigalova T.N. Serum metabolome by gas chromatography – mass spectrometry (GS–MS) in ulcerative colitis and celiac disease. Experimental and Clinical Gastroenterology. 2013;(12):44-57. [in Russian]

48. Smolikova G.N., Shavarda A.L., Alekseichuk I.V., Chan tseva V.V., Medvedev S.S. The metabolomic ap proach to the assessment of cultivar specifi city of Brassica napus L. seeds. Vavilov Journal of Genetics and Breeding. 2015;19:121-127 [in Russian]

49. Warth B., Parich A., Bueschl C., Schoefbeck D., Neumann N.K.N., Kluger B. et al. GC–MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics. 2015;11(3):722-738. DOI: 10.1007/s11306-014-0731-1

50. Winkler L.R., Bonman J.M., Chao S., Yimer B.A., Bockelman H., Klos K.E. Population structure and genotype–phenotype associations in a collection of oat landraces and historic cultivars. Frontiers in Plant Science. 2016;7:1077. DOI: 10.3389/fpls.2016.01077

51. Van de Wouw M., van Hintum T., Kik C., van Treuren R., Visser B. Genetic diversity trends in twentieth century crop cultivars: a meta-analysis. Theoretical and Applied Genetics. 2010;120(6):1241-52. DOI: 10.1007/s00122-009-1252-6

52. Yandeau-Nelson M.D., Lauter N., Zabotina O.A. Advances in metabolomic applications in plant genetics and breeding. CAB Reviews. 2015;10(040):1-15. DOI: 10.1079/pavsnnr201510040

53. Žilić S., Šukalović V.H., Dodig D., Maksimović V., Maksimović M., Basić Z. Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. Journal of Cereal Science. 2011;54(3):417-424. DOI: 10.1016/j.jcs.2011.08.006


Review

For citations:


Loskutov I.G., Shelenga T.V., Konarev A.V., Khoreva V.I., Kerv Yu.A., Blinova E.V., Gnutikov A.A., Rodionov A.V., Malyshev L.L. Assessment of oat varieties with different levels of breeding refinement from the Vavilov Institute’s collection applying the method of metabolomic profiling. Proceedings on applied botany, genetics and breeding. 2022;183(1):104-117. https://doi.org/10.30901/2227-8834-2022-1-104-117

Views: 555


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-8834 (Print)
ISSN 2619-0982 (Online)