Changes in the content of proteins and lipids and in the state of the antioxidant system in mutant forms of Amaranthus cruentus L.
https://doi.org/10.30901/2227-8834-2022-1-76-85
Abstract
Background. One of the important indicators of the nutritional value of amaranth is the high content of protein and lipids in seeds. Hence, obtaining and identifying such forms of amaranth through breeding, so that they also possessed resistance to abiotic stressors, is an important task.
Materials and methods. Leaves and seeds of Amaranthus cruentus L. and mutants of the second inbred generation obtained by treatment with sodium azide were analyzed. The Bradford assay was used to measure the content of total soluble protein, lipid analysis was performed by thin-layer chromatography, the state of the antioxidant system was assessed according to catalase and peroxidase activities and the rate of superoxide anion formation. Mathematical data were processed using the Statistica 10.0 software.
Results. The highest concentration of total protein in seeds was 13.78 mg/g in one of the mutants obtained after treatment with 3 mM sodium azide. Fifteen fatty acids were found in amaranth seeds, and in four mutants a significant increase in the percentage of omega-6 unsaturated linoleic acid was recorded. An increase in salt tolerance compared to the control was observed in mutants No. 2 and No. 3. Mutant No. 2 under salinization demonstrated higher peroxidase activity and mutant No. 3 higher catalase activity; both mutants showed a reduced rate of superoxide anion formation compared to the control.
Conclusion. Amaranth mutants identified for higher stress resistance, protein content and linoleic acid content can be recommended for further breeding to produce new cultivars of amaranth with economically valuable traits.
Keywords
About the Authors
R. M. TaipovaRussian Federation
Ragida M. Taipova, postgraduate student, Department of Biochemistry and Biotechnology, Faculty of Biology
32 Zaki Validi St., Ufa 450074
V. N. Nesterov
Russian Federation
Viktor N. Nesterov, Cand. Sci. (Biology), Senior Researcher
10 Komzina St., Tolyatti, 445003
O. A. Rozentsvet
Russian Federation
Olga A. Rozentsvet, Dr. Sci. (Biology), Chief Researcher
10 Komzina St., Tolyatti, 445003
B. R. Kuluev
Russian Federation
Bulat R. Kuluev, Dr. Sci. (Biology), Leading Researcher
71 Oktyabrya Ave., Ufa 450054
References
1. Agarwal S., Pandey V. Antioxidant enzyme response to NaCl stress in Cassia angustifolia. Biologia Plantarum. 2004;48(4):555-560. DOI: 10.1023/B:BIOP.0000047152.07878.e7
2. Asada K. Production and action of active oxygen species in photosynthetic tissues. Causes of Photoxidative Stress and Amelioration of Defense Systems in Plants. New York, NY: CRC Press; 1994. р.78.
3. Aydin S.S., Büyük I., Aras S. Relationships among lipid peroxidation, SOD enzyme activity, and SOD gene expression profile in Lycopersicum esculentum L. exposed to cold stress. Genetics and Molecular Research. 2013;12(3):3220-3229. DOI: 10.4238/2013.august.29.6
4. Becker R., Wheeler E.L., Lorenz K., Stafford A.E., Grosjean O.K., Betschart A.A. et al. A composition study of amaranth grain. Journal of Food Science. 1981;46(4):1175-1180. DOI: 10.1111/j.1365-2621.1981.tb03018.x
5. Benavides M.P., Marconi P.L., Gallego S.M., Comba M.E., Tomaro M.L. Relationship between antioxidant defense system and salt tolerance in Solanum tuberosum. Australian Journal of Plant Physiology. 2000;27(3):273-278. DOI: 10.1071/PP99138
6. Blokhina O., Virolainen-Arne E., Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany. 2003;91(2):179-194. DOI: 10.1093/aob/mcf118
7. Bradford M.M. A rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry. 1976;72:248-254. DOI: 10.1006/abio.1976.9999
8. Das S. Amaranthus: a promising crop of future. Singapore: Springer; 2016. DOI: 10.1007/978-981-10-1469-7
9. Dionisio-Sese M.L., Tobita S. Antioxidant responses of rice seedlings to salinity stress. Plant Science. 1998;135(1):1-9. DOI: 10.1016/S0168-9452(98)00025-9
10. Elfeky S., Abo-Hamad S., Saad-Allah K.M. Physiological impact of sodium azide on Helianthus annuus seedlings. International Journal of Agronomy and Agricultural Research. 2014;4(5):102-109.
11. Ermakov A.I., Arasimovich V.V., Yarosh N.P., Peruanskiy Yu.V., Lukovnikova G.A., Ikonnikova M.I. Methods of biochemical research in plants (Metody biokhimicheskogo issledovaniya rasteniy). A.I. Ermakov (ed.). 3rd ed. Leningrad: Agropromizdat; 1987. [in Russian]
12. Evgrashkina T.N., Ivanishchev V.V., Boykova O.I., Zhukov N.N. Induction of oxidative stress with carbonate salinization in triticale seedlings. Russian Agricultural Sciences. 2020;(1):11-14. [in Russian] DOI: 10.31857/S2500-2627-2020-1-11-14
13. Foyer C.H., Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum. 2003;119(3):355–364. DOI: 10.1034/j.1399-3054.2003.00223.x
14. Gamel T.H., Mesallam A.S., Damir A.A., Shekib L.A., Linssen J.P. Characterization of amaranth seed oils. Journal of Food Lipids. 2007;14(3):323-334. DOI: 10.1111/j.1745-4522.2007.00089.x
15. Gómez-Pando L., Eguiluz A., Jimenez J., Falconí J., Heros Aguilar E. Barley (Hordeum vulgare) and Kiwicha (Amaranthus caudatus) improvement by mutation induction in Peru. In: Q.Y. Shu (ed.). Induced Plant Mutations in the Genomics Era. Rome: FAO; 2009. p.330-332.
16. Gudym E.V. Description of mutant amaranth forms according to grain quality (Kharakteristika mutantnykh form amaranta po kachestvu zerna). Bulletin of the Belarussian State Agricultural Academy. 2018;(1):113-117. [in Russian]
17. Hasanuzzaman M., Hossain M.A., Teixeira da Silva J.A., Fujita M. Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In: B. Venkateswarlu, A.K. Shanker, C. Shanker, M. Maheswari (eds). Crop Stress and Its Management: Perspectives and Strategies. Dordrecht: Springer; 2011. p.261-315. DOI:10.1007/978-94-007-2220-0_8
18. Kates M. Techniques of lipidology: Isolation, analysis, and identification of lipids. Transl. from Eng. by V. Vaver. Moscow: MIR; 1975. [in Russian]
19. Kečkešová M., Gálová Z., Hricová A. Changes in protein profile in amaranth mutant line. Journal of Microbiology, Biotechnology and Food Sciences. 2012;1:1129-1135.
20. Koca H., Ozdemir F., Turkan I. Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biologia Plantarum. 2006;50(4):745-748. DOI: 10.1007/s10535-006-0121-2
21. Levitana T.P., Lipskaya A.A., Dmitrieva E.Yu. Methods for biochemical analysis of plants (Metody biokhimicheskogo analiza rasteniy). Leningrad: Leningrad State University; 1978. [in Russian]
22. Los D.A. Fatty acid desaturases. Moscow: Scientific World; 2014. [in Russian]
23. Minibayeva F.V., Gordon L.K., Kolesnikov O.P., Chasov A.V. Role of extracellular peroxidase in the superoxide production by wheat root cells. Protoplasma. 2001;217(1-3):125-128. DOI: 10.1007/BF01289421
24. Mlakar S.G., Turinek M., Jakop M., Bavec M., Bavec F. Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura. 2009;6(2):43-53.
25. Nagesh Babu R., Devaraj V.R. High temperature and salt stress response in French bean (Phaseolus vulgaris). Australian Journal of Crop Science. 2008;2(2):40-48.
26. Opute F.I. Seed lipids of the grain amaranths. Journal of Experimental Botany. 1978;30(3):601-606. DOI: 10.1093/jxb/30.3.601
27. Panchuck I.I., Volkov R.A., Schöff F. Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiology. 2002;129(2):838-853. DOI: org/10.1104/pp.001362
28. Rücker B., Röbbelen G. Mutants of Brassica napus with altered seed lipid fatty acid composition. In: J.P. Williams, M.U. Khan, N.W. Lem (eds). Physiology, Biochemistry and Molecular Biology of Plant Lipids. Dordrecht: Springer; 1997. p.316-318. DOI: 10.1007/978-94-017
29. Taipova R.M., Kuluev B.R. Determination of the optimal concentration of mutagen sodium azide for Amaranthus cruentus L. seed treatment. Vestnik of Voronezh State Agrarian University. Series: Chemistry, Biology, Pharmacy. 2021;(3):34-41. [in Russian]
30. Vysochina G.I. Amaranth (Amaranthus L.): chemical composition and prospects of using (review). Chemistry of Plant Raw Materials. 2013;(2):5-14. [in Russian]
Review
For citations:
Taipova R.M., Nesterov V.N., Rozentsvet O.A., Kuluev B.R. Changes in the content of proteins and lipids and in the state of the antioxidant system in mutant forms of Amaranthus cruentus L. Proceedings on applied botany, genetics and breeding. 2022;183(1):76-85. (In Russ.) https://doi.org/10.30901/2227-8834-2022-1-76-85